it I ProGUI V1.44
i _U l WWW. progui.co.uk

© 2025 Chris Deeney, Hash Design

Contents 3

Table of Contents

Part | Introduction 9
Part Il License 13
Part lll Requirements 15
Part IV Installation & Usage 17
Part V Reference Manual 19
I 7= o 1= - | 22
[oY U A=Y] o] o ST SRRPN
StartProGuUI
ChangelListiconSublcon
(IO T= o | =0T 4 RSP SSSURRRRN
(T o] g1 4N 7= T 1= P EURPPRRRS PPN
[Ty o 1 8] - PP
SetWindow Font ...
[=TS 01 10 = PSSP
[(01T TP PP PPPPPTRTPPPPPRTIN
(O] oX=T o MV T Lo Ko XNV PRSPPI
LIMITWINAOW SIZE ...ttt e et e e e et e e e e e ta b e e e e e ataeeeesatbeee e s nbaeeaeasssseeeeassseseeassssneeeassenesaannns
(Y0¥ o o TSP SSSPRPN
[1TA7 o 1 o PSPPSR
b Y 1= 4 10 1 PP
(OF == =31 U P SEEPPRRSRR 29
Creat@POPUPIMENUEX ...iii ittt e e ek e e e e e e e e st et e e e s e e e e e e nen e e e e annne e e e anre e e e e nannneeenas 32
DiSPIAYPOPUPMENUENX ...ttt a e et e ettt e bt e e ea bt e sate e e eab e e sabeesabeeensneesabeeanbeeenes 32
MENUEXFLODISADIEeeiiiiiieii ettt e e s e e e et e e e e s et e e e e e snte e e e e saste e e e s nsaeeeeanseseeeeannteeeeassseneeeannnneaeannnns 32
MenuExAutoHotKeyDisable 33
SEEMENUEBXIM AGESIZE ...ttt ettt ettt h et e e bt e e e a bt e e b et e ehe e e e abe e e bt e e eba e e eab e e e bt e e anneeannee s 33
SEEMENUEBXSEYI ...t h e h ettt h et oo b et oo a bt e e b bt e bt e e e s bt e e bt e e ehn e e e ab e e e be e e nnne e nnee s 33
ST =T T U1 =g o) P EEEPPURRSRRS 34
[T L =T T U1 =g o) o P EEEPPUR SRR 34

MenuTitleEx
Menultem Ex

MenuBar Ex

SEEIMENUEXITEIM SEALEeiiiiiiie et e e e et e e e e et e e et e et e e s s e e e e e e nn e e e e e annne e e e anre e e e e nnnneeenas 36
GEIMENUEXITEM SEALE ...eii ittt e e e et e e e e e e e et e e e e e s e e e e e e men e e e e ansne e e e s nre e e e e nnnnneeenas 37
SEEMENUITEMIEX ..ottt e e e e st e e ek et e e e s n e e e e e saE e et e e aas e e e e e e nen e e e e ansne e e e snreeneennnneeenas 37
GEEIMENUITE M EXTEXL ..eeeiiieiiiee ettt et e e st e e ek et e e e s e e e e s et e et e e sas e e e e e e nen e e e e asnne e e e anre e e e e nannneeenas 38
REM OVEMENUITEIM EX ittt ettt e e et e e e e bt e e e s s s et e e s ar e et e e e s e e e e e e annre e e e e snreneeenannneeenannes 38
InsertMenultemEx

DisableMenultem Ex

LY =T LU =g PR P PP PPPRRR PRSP
CalCMENUIEEMWILN ..ot h e h ettt e b et e s bt e e e sttt e bt e e sat e e sab e e e be e e snneesnnee s 40

© 2025 Chris Deeney, Hash Design

ProGUI V1.44

GEtMENUEXBArHEIGNT ..ottt b et 40
FrEEMENUEK ..o et e e e st et e e st e e e e b e e e e e s e e e e e e are e e e s st e e e e nanes 40

T o Lo 11 == 41

CrEALETOOIBAIEX ...ouiiiiiiitiiiti ettt bbbttt ekt a ekt eeh ekt e bt e bt e e et et he e eae e e b e e nhe e be e bt e bt enneen 41
SEETOOIBAIEXSEYIE ...ttt ettt a ekt s bt ekt bttt et et e st s i ekt enhe e be e bt e beeneen 42
TOOIBAr IMAgE@BUTTONEX ...eiiiiiiitie et b e bbbttt et e et enneenteas 42
TOOIBAI BUTTONEX ...ttt bttt h e bt bt e bt e bt e bt e bt e bt e b e e e nan et eenneente s 43
TOOIBAr SEPAIBLOTEX ...ttt bbbt b ettt h ekt ehe e bt e e bt e bt e bt e bt e s bt ab e e et nne et 44
ToolBarDropdow NIMAagE@BUEITONEX ...c.ciiuiiiiiiieieiiee ettt ettt ettt et nneentees 44
ToOIBar EXAttaChDrOPAOW NIMENU ..ottt sh bbbt bt ettt et e et enneentees 45
ReTo]1=F: T =T CT=Te Lo 1= USSP U R UP PV OPROPTI 45
INS EITTOOIBAr BULTONEX ...ttt b ettt e e b bt e bttt e bt et e et e e snes 45
INSErtTooIBar IMageBULTONEXcociiiiiii ittt b et sb et nb e et ese e aaes 46
INS EItTOOIBAr SEPAIrALOTEX .ueiiuiiiiiiiiie ittt b et eb e bt b et et e e e 46
InsertToolBarDropdow NIMageBULTONEXcoiiiiiiiiiiiiii et a7
InsertToolBarExGadget
DisableToolbarExButton
SelectToolbarExButton
ChangeTOO DA EXBUTTONoiuiii ittt sh bbbt ettt et sk enae e st e e nbe e beenneens
RemoveToolBarExButton ...
HIA@TOOIBAI EXBULTON ...ttt bbbt bbbttt et b e bt e eb e e bt e bt et e e b s e e eaes
R Yo]1=F: 1 =g KoY] I N o H T TSP SO UU PV OPROPTI
ToolBarExToolTipDelay
ToolBarExButtonWidth
TOOIBAIEXHEIGNT ..ottt b bt e bttt b e et et et e e st eenneentees
SetToolBarExButtonWidth
SEETOOIBArEXHEIGNT ..ottt h bbbt et ettt s e s b e e nbe e s beenbe e beenteeas
Disable TOOIBar EXBULLONFAGEooiiiiiiiiieieie et nb et nb et 52
ToolBarExID
ToolBarExGadgetID
FrEETOOIBAIEX ...ttt ettt h bbbt b et e e a e eab e R bt h et b e bt

S =Y o - P

(01T 1E=T 2 =] o - LSRR RTPRPPN
SetRebarStyle
AddRebarGadget
L EY Y R] o= T ©7-To Ko 1= APPSO PP UPRPRRPPR 56
Show RebarBand
MoveRebarBand
D Loy €=] =T o F- g 7= Vo o [PPSO PR T UPRPRRPPRON 57
RebarHeight
RebarID
LR S o= U 2= o Yo I | 5 LU OO UPRPRRPPRO
SaveRebarLayout ...
(o F-To I 2 o o T T IR 1Yo 11 | PP PR PR PPRURPPPR
SEtREDAIUS @I CaAllDACK ..ottt e bt s ab e e s abe e e bb e e sateesnbeeebeeesnneesnnea s 59
FreeRebar
5 TextControlEx

LR O T 1 A o]] = SO OUPP
SetTextControlExPadding
SEtTEXICONTIOIBXFONT ...t h e h et e b e e b et e s bb e e e sttt e bt e e sbn e e eab e e e bt e e nbneennnee s
SetTextControlExColour

SetTextControlExGradient
SetTextCoNtrOIEXLINE@PAGTING ...oouiiiiieiie ettt et b e e saa e e ab e e b e e nnneesnnee s 64

© 2025 Chris Deeney, Hash Design

Contents 5

oYl o Ofo] gL { o 11 g =D S SRS PR R PRSPPI 65
(1) A D oo Y oL (o]| g =D A RSP TSPRRT PP 65
SEETEXLCONTIOIEXSLYIE ..ottt e bbbt bt e nres 65
GEETEXICONTIOIEXSEYIE ..ottt e bbb bt bt e e nres 66
SetTeXtCONTIOIEXDIM ENSIONS ..uiiiiiiiiieeiie ettt e s e e et e e sae e e sabeessbeeesseessseeasseeesseessaeeanseeebaeeasneesnneens 67
TEXECONTIOIEXWIALN L.ttt e et e e e et e e s tb e e e beeabeeeesbeesabeeenbeeeasseesnbeeesaeensnes

TEXtCONTIOIEXHEIGRNT ottt b e bbbt e e

TextControlExCalcSize
TEXECONTITOIEKID ...ttt ettt et ettt et e et e e et e e b e et e e esa e e eabe e e bee e e st e e eabeeaateeeasseeeabeeenteeensseesnbeeesaeannnes
FrEE TEXECONTIOIEX 1.utiiiiiie ittt ettt ettt e et e e e ab e e sateeeaseeeeabeesateeaateeeesbeesabeeaaseaeesbeesnseesnsaeessseesnbeesnsaaann

B P AN I X oo s

CrEALEPANEIEX ..ttt h et h ettt h e h ke eh e e ke h e Rttt ettt b e h e b e bt e bt
AGAPANEIEXPAGE ..ottt bbb bbbt b e e st e s st h e nh e b e bt e bttt b et an e nnes
AddPanelEximagePage
INS EITPANEIEXPAGE ...ttt ettt h bbbt b et e bt a et eab e e bt bt e eb e e bt e bt et e e bt naes

INSErtPANEIEXIMAGEPAGE ...oviiiiiiiiiie it b e bbbttt eab s be e b e eb e e bt e bt et e e b ae e eaes 74
SetPanelExUsercallback
GetPanelExUsercallback
SetPanelEXPageBaCK grOUNGcciiiiiii ettt ettt s et nae e st e nbe e bt et en 76
SetPanelExPageBorder
SEtPANEIEXPAGEAIDINE ..ottt bbbttt bbbt b et
SEtPANEIEXPAGESCIOIING ...ttt sa bbbttt ettt s st e e nae et e e bt e be et
GetPanelExPageScrolling ...
SEEPANEIEXPAGECUTS OF ...ttt ettt ettt ettt ettt ettt e a ekt e sh ekt oo bt et e e s et ean e e heesaseeb e e nbeenbeenbeebeenneens
GEEPANEIEXBITM @D ...ttt ettt b ettt ekt s a ekt eeh e b e e h et e e e bt ean e bt e e ae e b e e nheenbe e bt e neeneen
GetPanelExDC
RefreshPanelEx
SNOW PANEIEXPAGE ...ttt etttk a ekt eeh e ekt e bt e bt e et et e he e eae e e b e e nheenbe e bt e beeneen
PanelExWidth
PanelExHeight
PANEIEXID ittt h R bR e bbb R et ea bR et Rt h e bt e bttt e an e aaes
PanelExPagelndex ..
FreePanelExPage
FrEEPANEIEX ..ottt h b b h bbbt e R Rt h et h et

A = 10 11 Y 1 =

L= TU 0] o] = SO PP T TR PPPPPTRPPPPPRIN
ImageButtonEx
RIeTe Lo 1121210 N a0]]t SO UUR
122 (o I] 2 TU L A Ao]] T PP UPRTPPPPR
CheckButtonEx
SetButtonExSkin
GetButtonExSkin
ButtonExToolTip
GetButtonExText
SetButtonExText
ChangeButtonEx
DisableButtonEx
GetButtonExState
SetButtonExState ...

BUTTONEXID ettt ettt e oottt e e ekt et e e e bbbt e e 2 ek Ee e e oo aa kb e e e e e nb e e e e e e abeee e e e annbe e e e e anbeneeeannbneeeeannee
FE@EBUTTONEX ..ttt ettt e e ek e e e e e st et e e e aab b et e e s ab e e e e e e bbb e e e e annbe e e e e anbeneeeansbneeeaannes
Skin States & Properties

S TS o] L A= o = TP

© 2025 Chris Deeney, Hash Design

6 ProGUI V1.44

SPHEEEIEX ettt b et b e h bbbttt h e e bbbttt n e r e reare 100
SEESPITEEIEXSKIN ettt b bbbttt e e e ettt b et e et e b e n e reareene 101
GEESPITEETEXSKIN ittt b e b bbbt a et e e e e e e e bt e et e e bbb e e e et eneareane 101
SEtSPHEEIEXATIIIULE ..ottt e e n e sr e reane s 101
GetSPHEETEXATIIIDULE .o e n e areane 102
SPHEEETEXID .ottt ekttt a bbbt b e bt bt bt e st e e e b e e bttt bttt b e n e r e reare 104
FrE@SPITEEIEX vttt e b bbbt b bbb bbbttt 104
SKiN StAtES & PrOPEITIES ..ottt b bbbttt e e sa ettt e e e e s eneareane s 104
LS T T oY o] = = -V 109
(O oo T=T St o] (o] (=T == T PSSP P RSP U PP UPRTRRPR 112
AddExplorerBarGroup 112
AdAEXPIOTEIrBar IM AGE GIOUP w.eeeeeiiieitieteet ettt ettt b ettt a s bt e ehe e s bt e bt e bt e bt e bt eaeesaseeseenbeesneenbeens 113
(ST J o T =T 27T 1 (=T 11 TSP P TSR PP PR OPRPRTO 113
ExplorerBarimageltem 114
SELEXPIOT@IrBar GrOUPSTALEeiiiiteiiie ittt bbbttt e sae et esae et e e nbe et e e bt ebeesne e 114
GEtEXPIOT@rBar GrOUP STALEeieiitiiiiet ettt ettt ettt sa e b e nae et e e sbe et e e nbeebe e e 115
SetExplorerBarSkin ...
GREEXPIOT @I BN SKIN .ttt h et h ettt a bt a e e ea e b e nae e bt e nh e et e e bt e b e
EXPIOTEIBAIID ...ttt bbbttt h et s e et eh e ea ek e e bt e b bt e bttt e bt et b et eae s
FreeExplorerBarccccc.... .
SKIN SLAtES & PrOPEITIES ittt ettt h ettt ettt sa e bt eae et e e nbe et e e nbeebeenne s 116
OO0 Lo U | £/ 12 1= Vo =T 123
SEEUICOIOUIMOTE ..ottt b h et e bt e et e bt e e e e s s e s e et e s e sae e e b e e nbe et e e nne e b e e neene e e e e 123
(€1 U [Ofo] Lo U] 1Y KoL I TSP P RO P PSR PRRPR 124
GetCurrentColourScheme ...
GetUIColour
SetUIColour
MakeColour ...
MakeRGB
F N Fol g =121 (=T g Yo [@do] [YU RPN 133
CreateGradient
SIS (=T 1T=T o PP PP PRSP
STeT (= To IT=T o | (00 oYU TP P UR PRSPPI 134
GetGradientColour 134
REM OVEGIAUIENTCOIOUT ...tttk s b bt e r e e et e r e e e an e e e e s e nnees 134
(R =TT CT = To 1T=T o | AT OO P TS PR PRSPPI 135
Loadlmg
ImgPath
ImgWidth
ImgHeight
ImgBlend
[[0aKo] U =11 o o PP 137
Freelmg
0 RS Y ¢ = T PP
GetDefaultGlobalSkinColourTheme
SetGlobalSKINCOIOUI TREME ... e sr e n e
GetGlobalSKINCOIOUITREM @ ... et sn e n e
CreateSkin
SetSkinPath
LoadSkin
SaveSkin
GetSkinName
SetSkinName

© 2025 Chris Deeney, Hash Design

Contents 7

GEESKINHANTIE ...ttt b b bbbt h et e e e e e e e sb e btk e et e e be e e e s e eneareane s
SEESKINMPTOPEITY 1.tttk e bbbt e bt bt e bt e bt e st e b et e s e e sb et e ket e b e e e n e neareare
GetSkinProperty
GetSkinPropertyParam
SetSkinPropertyParam
GetSKINPropertySUDPAraMccociiiiiiiie e ettt e e sneareane 145
CoUNtSKINPropertySUDPArAmM Scciiiiiiiiiiie ettt e s en e reane 145
GEtSKINPIOPEITYCOIOUN ..ouiiiiiiiitiett ettt b ettt e e e bt sttt e bt e e e e eneaneane s 146
GetSKINPropertySUDPAram COIOUcc.iiiiiiiieeie ettt ettt e et e e e nbeesbeenteeneeenes 146
GEESKINPIOPEITYDALAcveiuieititiet ettt b bbbt bbbt et e e e s b e se e sb e b e ke et e be e e e s e aneaneane s 146
GetSKINProOPErtYDALASIZEccciciiriiiiiiiiieiet ettt ettt e e bbbt e e e e e eneaneane s 147
SetSkinPropertyData
SetSkinPropertyDataSize
SEESKINAUTOUDUALE ...ttt bbb bbbt e e e b e bt e st et e et e e bt e e e s eneaneane s
GEESKINAULOUDTALE ...ttt ae et h et e bt e m e en et emtees e e eae e e teeeaeesbeesneebeeneenteeneeenes
(] o o =SS 1 PSPPSR
(@70 o 37251 41 PSSR
(@707 o 37251 QT a1 0XeY 101 ¢ 1o] 111 1 | S PSSR
MergeSkins
IsSkin
FreeSkin

Part VI Registering

Part VIl Contact 155
Part VIII Credits 157
Part IX History 159

Index 175

© 2025 Chris Deeney, Hash Design

Introduction

10 ProGUI V1.44

1

Introduction

Introduction

One of the most important aspect of any application is the Graphical User Interface, this

.7_') being what the end user will interact with. No matter how well designed or programmed
10

: 1

your engine is; if the user experiences a dated, clunky, unresponsive, aesthetically
displeasing interface they will choose your competitors product over yours i.e. when | see

1 ' l a badly programmed interface, | tend to think the engine is badly coded too.

ProGUI takes the headache away from creating professional silky smooth user interfaces
for your applications by the use of simple, easy commands giving your program
professional GUI components and features found in many commercial applications.

Register Now! for a commercial license! just €20.00 EUR ($22 USD)

N N R Y

=1 EIENE A SN N AN A

2" 0000 @ U X A 80

Transfers | Queue Servers | Stark Pause Stop Add to Queue OpenDir Remowve Systemlog Preferences Exit

The main features of ProGUI

e Option for automatic double buffering of rebars when resizing! LT3 g
e Full Automatic Chewron support for rebars, see IE Explorer - resize the window too
small and click on the chewron to see a popup menu with toolbar icons. c .
onver »

Easy to use and simple APl with commands such as "MenuTitleEx(title.s)"
Easy Installation

Extremely fast rendering with internal caching and intelligent double-buffering. j Draw Table
One of the most accurate replicas of Whidbey, Office 2003 and Office2007
styles that exist as well as improvements over Microsoft's engine such as
flicker free menu tracking and superior menu scrolling! Delete *
Native 32 bit and 64 bit versions included!

Unicode support.

Windows 7, Vista and XP compatible.

Rebars! (IE Explorer style container control for toolbars), multiple rebars on
multiple windows!

Extended rebar functionality including new Office 2007 and Office 2003 styles,
auto \ertical resizing and user \ertical resizing.

Super smooth window resizing of components, no wild jumping or flickering!

Table | Window Help

Insert k

Select 3

#7 Table AutoFormat. ..

Extended toolbars, full 32bit Alpha masked icon support of any size for toolbar
buttons with separate images for normal, hot and disabled states. As many 4] sort...
toolbars as you want on multiple windows!

New Office 2007 and Office 2003 Toolstrip style toolbars!
Other controls can be inserted into Toolbars. Hide Gridlines
Office 2007 and Office 2003 styled ComboBoxes!

Support for drop down buttons in toolbars, just pass a popup menu or extended
popup menu to the command!

Formula. ..

© 2025 Chris Deeney, Hash Design

Introduction

o Extended menus! Have cool "floating" menus contained in a rebar/container with
ease! Full support for 32bit Alpha masked icons of any size in menus with support
for different images for normal, hot and disabled states! Includes extended system
menu and popup menu. Different styles of menu's available for example: Office
2003 style, Office XP/Whidbey style, IE Explorer style, Classic/Mozilla
Firefox Style and other styles. Automatic chewons on menus when window
resized too smalll Automatic detection of system font change and resized
accordingly. Full keyboard navigation and hot-key support. When menu goes off
screen automatically fits inside screen (see Explorer for a bad implementation of
this, see Firefox for a good implementation).

e Automatic generation of style/theme specific disabled state icons when not
specified.

e Theme adaptive custom user defined colours for User Interface styles.

¢ No mandatory window callbacks!

© 2025 Chris Deeney, Hash Design

License

14 ProGUI V1.44

2 License

License

License agreement for ProGUI. You must read this License agreement before continuing with the installation of this
software. Continue with the installation only when you hawe read and accepted the terms of this license agreement.

This License agreement is made between Chris Deeney and the user of ProGUI.
You must agree to the following:
1) No portion of the ProGUI binaries may be disassembled, reverse engineered, decompiled, modified or altered.

2) This package is supplied 'as is' and no liability will be accepted by Chris Deeney or any legal vendors of this software for
any damage incurred by the use of this software.

3) The ProGUI binaries/package can be distributed freely and in anyway with your application/program.

4) Neither directly nor indirectly can you disclose, distribute, sell, rent, lease, lend, reproduce or copy your ProGUI
registration key codes to anyone.

5) The creation of DLLs/Libraries whose primary function is to sene as a ‘wrapper' for ProGUI functions is explicitly
forbidden.

Copyright:
ProGUI is copyright © 2005 - 2025 by Chris Deeney. All rights reserved. This computer program is protected by copyright
law and international treaties.

Disclaimer:

This package is distributed 'as is' and no claims are made as to it's suitability for any purpose, if any. Chris Deeney does
not assume any responsibility for lost or damaged files, memory, or registry entries. Users installing this software do so on
such an understanding.

© 2025 Chris Deeney, Hash Design

Requirements

16 ProGUI V1.44

3 Requirements

System requirements

ProGUI can be used with any programming language that supports DLL calls, providing there is a wrapper include for that
particular language.

Currently Purebasic is the only language that is officially supported.

© 2025 Chris Deeney, Hash Design

Installation &
Usage

18 ProGUI V1.44

4 Installation & Usage

Installation & Usage

Installation for PureBasic V6.30
In order to use ProGUI with your program you can use either the DLL version or the User Library version.
DLL Usage
Simply copy the ProGUI.dII (or ProGUI64.dll if your PureBasic installation is 64 bit) and ProGUI_PB.pb include
file from the archive into your working directory. Alternatively you can copy the ProGUI.dIlI/ProGUI64.dll to your
"Windows\System32" directory and then it will be available to all applications and programs you write.
At the top of your code listing you should enter:

I ncludeFile "ProGU _PB. pb"

Note The ProGUI.dII/ProGUI64.dIl must be distributed with your compiled application in order for your
program to access ProGUI functions.

Help File Installation

Copy this help file (ProGUIl.chm) to your "PureBasic\Help\" directory for context hot-key help in your IDE.
(Note if the Help directory in the PureBasic folder does not exist then simply create it.)

Before you can use any of the ProGUI commands (with the exception of ProGUIVersion) you must first initialize
ProGUI with the StartProGUI command:

StartProcu ("", 0, 0, 0, 0, 0, 0, 0)

Now you are ready to begin!

© 2025 Chris Deeney, Hash Design

Reference
Manual

5

20

ProGUI V1.44

Reference Manual

Goners]

Various commands that aren't specifically
categorized.

ToolBarEx

Extended Toolbars have full support for 32bit
Alpha masked icon, PNG, JPG and other
image formats of any size for toolbar buttons
with separate images for normal, hot and
disabled states, the ability to insert other
gadgets/controls, Toolstrip styles in Office 2007
and Office 2003 plus more advanced features.

TextControlEx

TextControlEx is an advanced static
text/textbox control and allows your application
to display text labels with the following
features: Transparent background (no ugly solid
background colour), coloured text and
background, gradient coloured backgrounds,
anti-aliased text, border padding, multi-line
support, hyperlinks and "escape code" effects
such as bold, italic, underline...

et]

Extended Menus are "floating" menus
supporting full 32bit alpha masked icons, PNG,
JPG and other image formats of any size,
various styles (Office 2007, Office 2003, Office
XP/Whidbey, ...), full keyboard navigation &
automatic hot-key support, multi-monitor
support and ability to be contained within a
rebar or container plus more!

Rebwr]

Rebars act as containers for other controls
such as toolbars. The controls are contained in
bands which can be resized and mowed.

ProGUI extends the functionality of rebars by
adding automatic vertical resizing and manual
resizing of bands with the mouse plus full
automatic chewon support. Rebars also support
styles in Office 2007 and Office 2003.

PanelEx |

PanelEx is a fully nestable, powerful and
versatile container control with multiple pages;
ideal for displaying different sets of controls
depending on user input such as a preferences
section in your application or can be easily
used as a building block for other more
complex controls. Each page can have a
different gradient/theme background and/or
combined with a background image, alpha
masked image border and optional second
owerlay background and/or image combo, each
page also supports automatic scrolling of page
contents and automatic double buffering of
ProGUI components inside including any
graphical alpha effects.

© 2025 Chris Deeney, Hash Design

Reference Manual 21

ButtonEx

ButtonEx, ImageButtonEx, ToggleButtonEXx,
RadioButtonEx and CheckButtonEXx are easy to
use skinned and borderless image button controls
supporting 32bit alpha transparent images/icons,
separate images for various states (including:
normal, hot/hover, pressed and disabled states)
and tooltips.

SplitterEx

SplitterEx is a highly customizable skinned splitter
control used for splitting up areas of your interface
(which can be resized by dragging the splitter bar).
The SplitterEx has 2 default system skins and an
Office 2007 default skin. The SplitterEx also
supports an "anchoring" feature.

s

Skins allow ProGUI controls/components (and user
made controls) to be easily and quickly 'skinned' to
a particular graphical style whilst being highly
customizable. Includes various commands for
creating, loading, saving and manipulating skins.

ExplorerBar |

The ExplorerBar is a highly customizable skinned
navigation/menu control used for displaying a list of
categorized options/items by group which can be
collapsed or un-collapsed (supporting smooth
sliding animation with alpha fade transparency).
The ExplorerBar has a default system skin and an
Office 2007 default skin.

Colours & Images |

Various commands for setting/retrieving
rendering style colours/gradients and image
manipulation and effects.

© 2025 Chris Deeney, Hash Design

22 ProGUI V1.44

51 General
ProGUI - General

Overview
Various commands that don't fit into a particular category.
Command Index

ProGUIVersion
StartProGUI
ChangelListiconSublcon
LoadFontEx
GetFontName
GetFontSize
SetWindowFont
FreeFontEx
HotKey
OpenWindowEx
LimitWindowSize
LWord

HWord

Reference Manual - Index

5.1.1 ProGUIVersion
ProGUIVersion()
Syntax
Version.f = ProGUIVersion()
Description
Returns the current version of ProGUI as a float, useful for making sure your application isn't using an outdated

version of ProGUI.

General Index

5.1.2 StartProGUI
StartProGUI()
Syntax
StartProGUI(UserName$, KeyCodel, KeyCode2, KeyCode3, KeyCode4, KeyCode5, KeyCode6, KeyCode7)

Description

Initiates ProGUI for use. This must be the first command that is called with the exception of ProGUIVersion.
ProGUI defaults to trial mode if incorrect keycodes are entered.

© 2025 Chris Deeney, Hash Design

Reference Manual 23

Example:

I ncludeFile "ProGUl _PB. pb"

StartProcu (""", 0, 0, 0, 0, 0, 0, 0)

General Index
5.1.3 ChangelListiconSublcon

ChangeListiconSublcon()
Syntax
ChangelListiconSublcon(Listicon.i, ltempos.l, Subitempos.|, *Image)
Description
Adds or changes a listview's sub icon.
Listicon.i is the ID of the listicon gadget to alter. ltempos.| specifies the row of the listview, Subitempos.| specifies

the column and *Image is a pointer to the image data to add or replace the icon.

General Index
514 LoadFontEx

LoadFontEx()
Syntax
FontHandle (HFONT) = LoadFontEx(Name.s, PointSize.l, Flags.i)
Description
Loads a font ready for use. Name.s is the name of the font such as "Verdana" and PointSize.| is the desired size.

Flags.i can contain the following constants:

#Font _Bol d Makes the font bold.

#Font _Italic Makes the font italic.

#Font _Under i ne Makes the font have an underline.

#Font _Stri keCQut Makes the font have a strike-through line in the middle.

#Font _Anti al i ased The font is antialiased, or smoothed, if the font supports
it and the size of the font is not too small or too large.

#Font _NonAnti al i ased The font is never antialiased, that is, font smoothing is
not done.

#Font _Cl eartype If set, text is rendered (when possible) using ClearType

antialiasing method.

© 2025 Chris Deeney, Hash Design

24 ProGUI V1.44

#Font _Dr af t For GDI raster fonts, scaling is enabled, which means
that more font sizes are available, but the quality may be
lower. Bold, italic, underline, and strikeout fonts are
synthesized, if necessary.

The font can later be freed when not needed anymore using the FreeFontEx command.

Returns a handle to the font (HFONT) or zero for failure.

General Index
515 GetFontName
GetFontName()

Syntax
FaceName.s = GetFontName(FontID.i)

Description

Returns the face name of a font. FontID.i is a Windows font object handle or ID.

General Index
5.1.6 GetFontSize
GetFontSize()

Syntax
PointSize.l = GetFontSize(FontID.i)

Description

Returns the point size of a font. FontID.i is a Windows font object handle or ID.

General Index
51.7 SetWindowFont
SetWindowFont()

Syntax
SetWindow Font(Hwnd.i, Font.i)

Description

Sets the font that a common control is to use when drawing text. Hwnd.i is the handle of the control's window and
Font.i is the handle (HFONT) of the desired font.

General Index

© 2025 Chris Deeney, Hash Design

Reference Manual 25

5.1.8 FreeFontEx
FreeFontEx()
Syntax
Success = FreeFontEx (Font.i)
Description
Removwes a font from memory. Font.i is the handle (HFONT) of the desired font.

Returns nonzero for success, zero for failure.

General Index

5.1.9 HotKey
HotKey()

Syntax
Success = HotKey(WindowlD.i, ID.w, Key$)
Description

Associates or removes a keyboard hot-key combination with a WindowID (HWND). ID is the identifier of the
#\WM_COMVAND message that will be posted to WindowlD's message queue or if WindowlID is zero then the hot-key
will be an application global hot-key and will be posted to the thread's active root window. ID can also be -1'to
remove/disable the hot-key described in Key$.

Key$ is a text string describing the key combination that triggers the posted ID. Key$ can be written in practically
any format, for example "Ctrl+S" would trigger ID to be posted when the Control key and 'S' keys are pressed. The
space character and following list of characters are supported as key name delimiters:-

+ -, . ~"NI\ g

The Control key, Alt key and Shift key can be combined with any of the alphanumeric keys or following special key
descriptions: -

"back" "prtsc" "num7" "f12"
"tab" "insert" "num8" "f13"
"clear" "ins" "num9" "f14"
"return" "delete" "pad0" "f15"
"ret" "del" "pad1" "f16"
"enter" "help" "pad2" 17"
"ent" "leftwindows" "pad3" "f18"
"pause" "rightwindows" "pad4" "f19"
"capital” "leftwin" "pad5" "f20"
"caps" "rightwin" "pad6"” "f21"
"capslock" "lwin" "pad7" "f22"
"escape” "rwin" "pad8" "f23"
"esc" "apps" "pad9" "f24"
"space" "numpad0"” "multiply" "numlock”
"prior" "numpadl” "add" "scroll"

© 2025 Chris Deeney, Hash Design

26

ProGUI V1.44

"next" "numpad2" "separator" "plus"
"pageup” "numpad3" "subtract” "minus"
"pagedown” "numpad4” "decimal" "comma"
"pgup” "numpad5” "divide" "period"
"pgdn” "numpad6" "f1"

"end" "numpad7" "f2"

"home" "numpad8" "f3"

"left" "numpad9"” "f4"

"up" "num0" "f5"

"right" "num1" "f6"

"down" "num2" “fr

"select" "num3" "fg"

"print" "num4" "f9"

"execute" "num5" "f10"

"snapshot” "nume" "f11"

If Key$ is an empty string then all the hot-keys for that window (or all global hot-keys if WindowID is equal to zero)
will be cleared.

Returns true for success, zero for failure.

General Index

5.1.10 OpenWindowEx

OpenWindowEXx()
Syntax
WindowID (HWND) = OpenWindow Ex(Title$, x, y, InnerWidth, InnerHeight, Flags.i, Skin.i, ParentHwnd.i)
Description
Note this command is currently experimental and unsupported.
Opens/Creates a new window according to the specified parameters. Title$ is the text string that will be displayed in
the window's title bar. x and y are the coordinates of where the new window will be positioned on screen. InnerWidth
and InnerHeight specify the required client area (without borders and window decorations).
The new window becomes the active window unless the window is created as invisible.
Skin.i is currently an inactive place-holder parameter there for future expansion.
ParentHwnd.i specifies the handle of the window that our new window will be contained inside and can be null.
Possible flags are:
Adds the minimize control to the window title bar.

Adds the maximize control to the window title bar.
Adds the sizeable feature to a window.

#W ndow_M ni m ze
#W ndow_Maxi m ze
#W ndow_Si ze

© 2025 Chris Deeney, Hash Design

Reference Manual 27

#W ndow_I nvi si bl e Creates the window but won't display it.

#W ndow_Ti t | eBar Creates a window with a titlebar.

#W ndow_Tool Creates a window with a smaller titlebar and no taskbar entry.

#W ndow_Bor der Less Creates a window without any borders.

#W ndow_Scr eenCent er ed Centers the window in the middle of the screen. X,y parameters are ignored.
#W ndow_W ndowCent er ed Centers the window in the middle of the parent window (‘ParentHwnd.i' must be
specified). X,y parameters are ignored.

#W ndow_OpenMaxi mi zed Opens the window maximized.

#W ndow_OpenM ni mi zed Opens the window minimized.

Returns a handle (HWND) to the new window or zero for failure.

General Index

5.1.11 LimitWindowSize
LimitWindowSize()

Syntax
LimitWindow Size(WindowID.i, MinWidth.I, MinHeight.l, MaxWidth.I, MaxHeight.l)
Description

Sets the minimum and maximum dimensions that a window (HWND) can be resized to.

General Index

5.1.12 LWord
LWord()
Syntax
LowWord.w = LWord(Long.l)
Description

Returns the low-order word from a 32-bit number.

General Index
5.1.13 HWord

HWord()
Syntax
HighWword.w = HWord(Long.l)
Description

Returns the high-order word from a 32-bit number.

© 2025 Chris Deeney, Hash Design

28

ProGUI V1.44

General Index

© 2025 Chris Deeney, Hash Design

Reference Manual 29

5.2 MenuEx
ProGUI - MenuEXx
Overview
Extended Menus are "floating" menus supporting full 32bit alpha masked icons, PNG, JPG and other image formats

of any size, various styles (Office 2007, Office 2003, Office XP/Whidbey, ...), full keyboard navigation & automatic
hot-key support, multi-monitor support and ability to be contained within a Rebar or container plus more!

_iT‘ Edit Wiew Insert Format Tools
Command Index 1 New
CreateMenuEXx [Open... Cirl+0
CreatePopupMenuEx Clase
DisplayPopupMenuEx —
MenuExF10Disable | save Ctrl+S
MenuExAutoHotKeyDisable cave As
SetMenuExImageSize
SetMenuExStyle |y Save asWeb Page...
SetMenuExFont T File Search...
GetMenuExFont
MenuTitleEx
MenultemEx
MenuBarEx
SetMenuExItemState Page Setup...
GetMenuExItemState A Print Preview
SetMenultemEXx -
GetMenultemExText =
RemoveMenultemEx Send To N
InsertMenultemEx -
DisableMenultemEx Properties
MenuExID . 1 Z:\.\My Documentstest. doc
CalcMenultemWidth
GetMenuExBarHeight 2Z:\...\My Documents\DCC Manager.doc
FreeMenuEx 3 Z:\...\My Documents'CV.doc
Reference Manual - Index 4 7:\...\My Documents\OperatingSystems. doc
Exit
521 CreateMenuEx
CreateMenuEXx()

Syntax
WindowsID.i = CreateMenuEx (MenulD.l, WindowID.i, Style.l)
Description
Creates an empty extended "floating" menu bar in the window specified by WindowID. MenulD is the internal ID to be

used and if #Pr oGUI _Any is used then the returned value will be the new MenuEXx ID. Style specifies what graphical
style the menu is to use, currently there are 8 styles :

© 2025 Chris Deeney, Hash Design

30 ProGUI V1.44

Style.l Description
#Ul STYLE_BUTTON Button Style
#Ul STYLE_EXPLORER Explorer Style

#UlI STYLE_MOZI LLA Mozilla Firefox Style
#Ul STYLE_BEVELED_A Beweled Style A
#Ul STYLE_BEVELED_B Beweled Style B

#Ul STYLE_WHI DBEY Office XP/Whidbey Style

#UI STYLE_OFFI CE2003 Office 2003 Style

E‘ Window Help E‘ Window Help
j Draw Table j Drawe Table
Insert] Insert k
Delete 3 Delete »
Select k Select 3
i i
£ &=
|ﬂ Table AutoFormat. .. ﬁ Table AutoFormat...
AutoFit AutoFit
Conyert Conwvert
‘%l Sart... ‘%l Sort...
Formula... Formula...
Hide Gridlines BH Hide Gridiines

© 2025 Chris Deeney, Hash Design

Reference Manual 31

View | Insert Format View | Insert Format
Maormal Mormal
Web Layout Web Layout
Print Layout Print Layout

Reading Layout Reading Layout

Qutline Qutline

[<] G i O] & I
[<] Gl & L & [

Task Pane Cirl+F1 Task Pane Ctrl+F1

Toolbars 2 Toolbars 3
Ruler Ruler
@ Document Map @ Document Map
| i3 Thumbnails | i3 Thumbnais
E E

Header and Footer Header and Footer

Footnotes Footnotes

Markup Markup

=l Full Screen =l Full Screen
Zoom... Zoom...

#Ul STYLE_OFFI CE2007

Table | Window Help Window Help

ﬁ Draw Table ﬁ Draw Table
Insert » Inzert »
Delete J Delete 3
Select » Select »

il Merge Cells il Merge Cells

EE Split Cells... B Split Cells..,
Split Table Split Table

ﬂ Table AutcFormat... ﬂ Table AutcFormat...
AutoFit » AutoFit »
Heading Rows Repeat Heading Rows Repeat
Convert » Conyert »

2l Sort. 2l Sort.
Formula... Formula...

= Hide Gridlines 1 Hide Gridlines
Table Properties... Table Properties...

Please also see SetUIColour for changing the colours used in the various styles to your own custom colours.

Returns the Windows ID (HMENU) of the menu (or if #Pr oGUI _Any is used the MenuEXx ID) or zero for failure.

© 2025 Chris Deeney, Hash Design

32 ProGUI V1.44

See MenuTitleEx.

MenuEXx Index
5.2.2 CreatePopupMenuEx

CreatePopupMenuEx()
Syntax
WindowsID.i = CreatePopupMenuEx(MenulD.l, Style.l)
Description

Creates an empty extended popup menu. MenulD is the internal ID to be used and if #Pr oGUI _Any is used then the
returned value will be the new MenuEx ID. Style specifies what graphical style the menu is to use, see
CreateMenuEX.

Returns the Windows ID (HMENU) of the extended popup menu (or if #Pr oGUI _Any is used the MenuEXx ID) or zero if
the command failed.

See MenultemEXx.

MenuEx Index
5.2.3 DisplayPopupMenuEx

DisplayPopupMenuEx()
Syntax
Success = DisplayPopupMenuEx(Menu.i, WindowlID.i, X, Y.I)
Description
Displays a previously created PopupMenuEXx on screen.

Menu.i is the handle or ID of the PopupMenuEx. WindowlID.i is the Windows ID of the window you wish the popup to
send the #\Wv_COMVAND (item's ID) to when an item has been selected. X| and Y.l are the screen coordinates of the
desired popup position.

Returns true for success.

See CreatePopupMenuEX.

MenuEx Index
524 MenuExF10Disable

MenuExF10Disable()

Syntax

MenuExF10Disable(disable.b)

© 2025 Chris Deeney, Hash Design

Reference Manual 33

Description

Stops ProGUI from activating a MenuEx bar when F10 is pressed on the keyboard. Setting disable.b to true will
disable F10 menu activation.

MenuEx Index
5.25 MenuExAutoHotKeyDisable

MenuExAutoHotKeyDisable()
Syntax
MenuExAutoHotKeyDisable(disable.b)

Description

Disables or enables automatic hot-key creation and management of menu item text. Disable.b = True or False.

MenuEx Index
5.2.6 SetMenuExImageSize

SetMenuExImageSize()
Syntax
SetMenuExImageSize(Width.l, Height.l)
Description

Sets the Icon dimensions for Menu ltems.

MenuEx Index
5.2.7 SetMenuExStyle

SetMenuExStyle()
Syntax
Success = SetMenuEx Style(Menu.i, Style.l)
Description
Sets a previously created menu's rendering style.

Menu.i is the handle/ID of the MenuEx you wish to change the style of. Style.l is a User Interface graphical style
constant, see CreateMenuEXx for available styles.

Returns true for success, zero for failure.

See CreateMenuEXx, CreatePopupMenuEXx.

© 2025 Chris Deeney, Hash Design

34 ProGUI V1.44

MenuEXx Index

528 SetMenuExFont

SetMenuExFont()
Syntax

Success = SetMenuExFont(FontID.i)

Description
Sets the current font for all Extended Menus.
FontID is a Windows handle or ID to a previously loaded font.
Returns true for success or zero for failure.

See CreateMenuEXx, CreatePopupMenuEx, GetFontName, GetFontSize.

MenuEXx Index

529 GetMenuExFont

GetMenuExFont()
Syntax

Font.i = GetMenuExFont()
Description
Returns a Windows handle to the current MenuEx font.

See SetMenuExFont, GetFontName, GetFontSize.

MenuEx Index
.2.10 MenuTitleEx

‘

MenuTitleEx()
Syntax

MenuTitle Ex (Title$)
Description

Adds a top menu title to the current MenuEX.

If Title$ contains the ampersand character '&', the preceding letter will be underlined and used as the menu title's
keyboard accelerator.

For example: "T&able" would be displayed as "Table".

See MenultemEx.

© 2025 Chris Deeney, Hash Design

Reference Manual 35

MenuEx Index

5.2.11 MenultemEx

MenultemEx()
Syntax
MenultemEx (MenultemID.l, Text$, *NormallmagelD, *HotimagelD, *DisabledimagelD, Submenu.i)
Description
Adds a menu item to the current MenuTitleEx or PopupMenuEX.

MenultemID specifies the internal ID to be used and will be posted to the parent window's message queue when
selected. MenultemID can also be #ProGUI _Any in which case the returned value will be the new automatically
generated MenultemID. Text$ is displayed as the menu item's text. NormallmagelD, HotimagelD and
DisabledimagelD are pointers to image data that are used to display the menu item in the various states. If
*DisabledimagelD is null then the disabled state image will be rendered automatically based on *NormallmagelD and
the current theme/style.SetMenuExImageSize must be called previously in order to set the dimensions of the menu
item's icon and will default to 16x16 otherwise. In order to make a submenu, simply specify Submenu as the ID or
handle of a previously defined PopupMenuEX.

If Text$ contains the ampersand character '&', the preceding letter will be underlined and used as the menu item's
keyboard accelerator.

For example: "Save &As..." would be displayed as "Sawe As..." (pressing 'A' on the keyboard would then select this
item).

A hot-key can be automatically displayed and created (see HotKey, MenuExAutoHotKeyDisable) at the right of the
item by including the dollar character '$' in the parameter Text$. Any text that precedes the '$' will be displayed as
the hot-key, for example: "&Save$Ctrl+S" would be displayed in the menu as "Save Ctrl+S" and be
automatically right aligned at the right of the menu with any other hot-keys.

If you need to display a dollar character, a double dollar character "$$" will display a single dollar character.

Text$ can also contain "escape codes" for altering the appearance of the text such as Bold, Italic, Underline, Strike
Through and Colour effects.

An escape code begins with the backslash character \' followed by a single character. Specifying the same escape
code again will toggle the effect off (with the exception of \c' and \n' escape codes). If you need a backslash to be
displayed in the menu item then a double backslash will give you a single backslash. The following table details the
currently supported escape codes and gives examples of usage:

Escape Description Example Example Output
Code
\b Applies the Bold effect to any text after "This is an \bexample\b item" | Test | Another Weee! Really
this escape code. ¥ Thisis an example tem
#)| Test1

© 2025 Chris Deeney, Hash Design

36 ProGUI V1.44

\i Applies the ltalic effect to any text after "This is an \iexample\i item" Test | Another Weee! Really
this escape code. # Thisis an exampieitem
#) Test1
Q| Testz
\u Applies the Underline effect to any "This is an \uexample\lu item" | Test | Another Weee! Really
text after this escape code.) This is an example item
#) Test1
Q| Testz
\s Applies the Strike Through effect to "This is an \sexample\s item" | Test | Another Weee! Really
any text after this escape code. ¥ This is an example item
#) Test1
Q| Testz
\c Changes the colour of any text after "“This is an \cff000OOexample\n | Test | Another Wieeel Really
this escape code. The escape code item" ¥ Thisis an example item
should be followed by 6 characters) Testl
representing the hexadecimal value of &| Testz
the colour. \n' should be used to cancel
the colour.
\n This escape code cancels any active "This is an \u\bexample\n Test | Another Weee! Really
effects and displays the preceding text item" ¥ Thisis an example item
as Normal.) Test1
| Test2

MenuEXx Index

5.2.12 MenuBarEx
MenuBarEx()
Syntax
MenuBarEx()
Description

Adds a horizontal divider bar to a MenuEXx, used to split up different sections of a menu.

MenuEXx Index

5.2.13 SetMenuExltemState

SetMenuExItemState()

Syntax
Success = SetMenuExItem State(Menu.i, ltemID.|, State.l)

Description

© 2025 Chris Deeney, Hash Design

Reference Manual 37

Sets a menu item's checkbox or radiocheck state. Menu.i is the Handle or ID of the menuEx that the item belongs
to. ltemlID.| is the ID of the item's state you wish to change. State.l can be one or more constant values determining
the desired state of the item.

A checkbox can be displayed with the item by specifying State.l as #I t enEx_ShowCheckbox. In order to use the
item’s icon with the checkbox then specify State.l as #I t enEx_ShowCheckbox| #I t emEx_Usel con.

A radiocheck group can be created by specifying State.l as #I t enEx_ShowRadi ocheck. Any items in the same
menu with this state will become part of the same radiocheck group unless State.l is

#1 t emEx_EndRadi ocheckGroup Or #l t emEx_ShowRadi ocheck| #1 t emEx_EndRadi ocheckGr oup (the next time an
item's state is set to #I t emEx_ShowRadi ocheck a new group will be created). The last item set with

#1 t emEx_ShowRadi ocheck will be the default selected item. In order to use the item's icon as the radiocheck then
specify state as #I t emEx_ShowRadi ocheck]| #| t emEx_Usel con. Setting again a previously created checkgroup
item's state to #1 t emEx_ShowRadi ocheck will make it the currently selected item.

To remowve a checkbox from an item or remowve an item from a radiocheck group then specify State.l as false.
Returns true for success or false for failure.

See GetMenuExltemState, MenultemEX.

MenuEXx Index

5.2.14 GetMenuExItemState

GetMenuExItemState()
Syntax
State = GetMenuExItem State(Menu.i, ItemID.|)
Description

Returns true if the item is checked or the item is the currently selected checkgroup item. Menu.i is the handle or ID
of the menu that the item belongs to and ItemID.| is the ID of the desired item's state.

See SetMenuExltemState, MenultemEX.

MenuEXx Index

5.2.15 SetMenultemEx

SetMenultemEXx()

Syntax

Success = SetMenultemEx(Menu.i, ltemID.l, Text$, *NormallmagelD, *HotlmagelD, *DisabledimagelD, Submenu.i)
Description

Alters/updates a previously created menu item.

Menu.i is the handle/ID of the menu. ItemID.l is the ID of the item you wish to change. Text$ is the new text you
want the item to display and can contain rendering effect "escape codes" (see MenultemEx). *NormallmagelD,

© 2025 Chris Deeney, Hash Design

38 ProGUI V1.44

*HotlmagelD and *DisabledimagelD are optional pointers to the new image data for the item and can be null.
Submenu.i is the optional handle/ID of the new sub menu to be attached and can be null.

Any hot-key previously automatically created for this menu item will be removed, and a new one created if Text$
contains a hot-key.

Returns true for success or false for failure.

See MenultemEx.

MenuEXx Index
5.2.16 GetMenultemExText

GetMenultemExText()
Syntax
Text$ = GetMenultemEx Text(Menu.i, ltemID.I)
Description
Returns a menu item's text.
Menu.i is the handle/ID of the menu the item belongs to. ItemlID.| is the desired item to retrieve the text from.

See SetMenultemEx, MenultemEXx.

MenuEXx Index
5.2.17 RemoveMenultemEx

RemoveMenultemEx()
Syntax
Success = RemoveMenultemEx(Menu.i, ItemID.l, byPosition.b)
Description
Removes a menu item from a MenuEx.
Menu is the handle/ID of the menu you wish to remowve the item from. If byPosition.b is false, ItemID.l is the ID of the
desired item to remove. If byPosition.b is true then ItemID.l is the index of the item to remowe, zero being the first
item in the menu.
Any hot-key automatically created for this menu item will also be removed.

Returns nonzero for success or zero for failure.

See InsertMenultemEx, MenultemEXx.

MenuEXx Index

© 2025 Chris Deeney, Hash Design

Reference Manual 39

5.2.18 InsertMenultemEx
InsertMenultemEx()
Syntax

Success = InsertMenultemEx(Menu.i, Position.l, NewltemID.|, Text$, *NormallmagelD, *HotlmagelD,
*DisabledimagelD, Submenu.i)

Description
Inserts a new menu item into a previously created MenuEx.

Menu.i is the handle/ID of the menu. Position.| is the index in the menu of where you would like the new item to be
inserted (zero being the first item). Specifying -1' for Position.| will place the new item at the end of the menu.
NewltemID.| is the ID you would like to associate with the item. Text$ is the new text you want the item to display
and can contain rendering effect "escape codes" (see MenultemEXx). *NormallmagelD, *HotimagelD and
*DisabledimagelD are optional pointers to the icon image data for the item and can be null. Submenu.i is the optional
handle/ID of the new sub menu to be attached and can be null.

Returns true for success or false for failure.

See RemowveMenultemEx, MenultemEx, CreateMenuEx, CreatePopupMenuEx.

MenuEXx Index

5.2.19 DisableMenultemEx

DisableMenultemEx()
Syntax
Success = DisableMenultemEx(Menu.i, ltemID.l, State.b)
Description

Sets a menu item's disabled state. Menu specifies the MenulD/Handle of the menu containing the item to be
disabled/enabled. ItemID specifies the ID of the item. State can be none zero to disable the menu item or zero to
enable the menu item.

Any hot-key automatically created for this menu item will also be disabled/enabled.

Returns none zero if successful.

MenuEXx Index

.2.20 MenuEXxID

‘

MenuExID()

Syntax
WindowsID.i = MenuExID(MenulD.|)

Description

© 2025 Chris Deeney, Hash Design

40 ProGUI V1.44

Returns the Windows ID of a MenuEXx internal MenulD.

MenuEx Index
5.2.21 CalcMenultemWidth

CalcMenultemWidth()
Syntax
MenuWidth.l = CalcMenultemWidth(Menu.i)
Description
Calculates and returns the width of a menu (in pixels) specified by Menu.i. Menu.i can be a WindowsID or MenulD.

Useful for calculating dimensions before a menu is created.

MenuEx Index

5.2.22 GetMenuExBarHeight
GetMenuExBarHeight()
Syntax
Height.l = GetMenuExBarHeight(Menu.i)
Description
Returns the height of a MenuEXx title bar.

Menu is the handle/ID of the menu title bar you wish to retrieve the height from.

MenuEx Index
5.2.23 FreeMenuEx

FreeMenuEXx()

Syntax
Success = FreeMenuEx(Menu.i)
Description

Remowes the specified MenuEx (or all) freeing any memory used. Menu.i can be a Handle/MenulD or -1 in order to
free all menus.

Returns True for success, zero for failure.

MenuEXx Index

© 2025 Chris Deeney, Hash Design

Reference Manual 41

5.3 ToolBarEx
ProGUI - ToolBarEx

FERENR AN TEEN =N A A AR - e NN

Overview

Extended Toolbars have full support for 32bit Alpha masked icon, PNG, JPG and other image formats of any size for
toolbar buttons with separate images for normal, hot and disabled states, the ability to insert other gadgets/controls,
Toolstrip styles in Office 2007 and Office 2003 plus more advanced features.

Command Index

CreateToolBarEx
SetToolBarExStyle
ToolBarlmageButtonEx
ToolBarButtonEx
ToolBarSeparatorEx
ToolBarDropdownimageButtonEx
ToolBarExAttachDropdownMenu
ToolBarExGadget
InsertToolBarButtonEx
InsertToolBarimageButtonEx
InsertToolBarSeparatorEx
InsertToolBarDropdownimageButtonEx
InsertToolBarExGadget
DisableToolbarExButton
SelectToolbarExButton
ChangeToolbarExButton
RemowveToolBarExButton
HideToolBarExButton
ToolBarExToolTip
ToolBarExToolTipDelay
ToolBarExButtonWidth
ToolBarExHeight
SetToolBarExButtonWidth
SetToolBarExHeight
DisableToolBarExButtonFade
ToolBarExID
ToolBarExGadgetID
FreeToolBarEx

Reference Manual - Index

53.1 CreateToolBarEx
CreateToolBarEx()

Syntax

© 2025 Chris Deeney, Hash Design

42 ProGUI V1.44

WindowsID = CreateToolBarEx(ID.l, WindowlID.i, lconWidth.l, lconHeight.l, Style.l)

Description

Creates an empty extended toolbar in the window specified by WindowID. ID is the internal ID to be used and if
#ProGUI _Any is used then the returned value will be the new ToolBarEx ID. IconWidth and IconHeight are the
dimensions of the image buttons you would like (if any).

Style is optional and can contain the following flags:
#TBSTYLE_HI DECLI PPEDBUT Hides the toolbar buttons when the containing window's edge obscures them.

TONS

#Ul STYLE_OFFI CE2003 Creates a Toolstrip Office 2003 style toolbar when contained within a rebar with the
same style applied.

#Ul STYLE_OFFI CE2007 Creates a Toolstrip Office 2007 style toolbar when contained within a rebar with the
same style applied.

#Ul STYLE_| MAGE Remowes all padding around the toolbar buttons and remowves the button border.

Please also see SetUIColour for changing the colours used in the various styles to your own custom colours.

Style can also contain other flags, see Microsoft MSDN for details.
Returns the Windows ID of the toolbar (or if #Pr oGUI _Any is used the ToolBarEx ID) or zero for failure.

See ToolBarimageButtonEx, ToolBarButtonEx, ToolBarDropdownimageButtonEx.

ToolBarEx Index
5.3.2 SetToolBarExStyle

SetToolBarExStyle()
Syntax
Success = SetToolBarExStyle(Toolbar.i, Style.l)
Description
Used to change a previously created toolbar's graphical style.

Toolbar.i specifies the Handle/ToolbarlD of the ToolBarEx. Style.l is a User Interface graphical style constant, see
CreateToolbarEx for details.

Returns True if successful, or False otherwise.

ToolBarEx Index
5.3.3 ToolBarimageButtonEx

ToolBarlmageButtonEx()

Syntax

© 2025 Chris Deeney, Hash Design

Reference Manual 43

Success = ToolBarlmageButtonEx (ButtonID.l, Text$, *NormallmagelD, *HotimagelD, *DisabledimagelD, Style.l)
Description
Adds an image button to the current ToolBarEx.

ButtonID specifies the internal ID to be used and if #Pr oGUI _Any is used then the returned value will be the new
Button ID. Text$ is displayed as the button's label and can contain escape-code effects (see MenultemEx for
details). *NormallmagelD, *HotimagelD and *DisabledimagelD are pointers to image data that are used to display the
button in the various states. If *DisabledimagelD is null then the disabled state image will be rendered automatically
based on *NormallmagelD and the current theme/style.

Style.l specifies the optional Windows flags for the button and can include any of the following:

#BTNS_BUTTON
#BTNS_SEP
#BTNS_CHECK

#BTNS_ GROUP

#BTNS_ CHECKGROUP
#BTNS_DROPDOWN
#BTNS_AUTQOSI ZE
#BTNS_NOPREFI X
#BTNS_SHOWIEXT
#BTNS_WHOL EDROPDOVWN

See Microsoft MSDN for details.

Returns zero for failure or the Button ID for success.

ToolBarEx Index

534 ToolBarButtonEx

ToolBarButtonEx()

Syntax

Success = ToolBarButtonEx(ButtonID.l, Text$, Style.l)
Description

Adds a text button to the current ToolBarEx.

ButtonID specifies the internal ID to be used and if #Pr oGUI _Any is used then the returned value will be the new
Button ID. Text$ is displayed as the button's label and can contain escape-code effects (see MenultemEx for
details). Style.l specifies the optional Windows flags for the button and can include any of the following:

#BTNS_BUTTON
#BTNS_SEP
#BTNS_CHECK
#BTNS_GROUP

#BTNS_ CHECKGROUP
#BTNS_DROPDOWN
#BTNS_AUTOS| ZE
#BTNS_NOPREFI X
#BTNS_SHOWTEXT
#BTNS_WHOL EDROPDOVN

© 2025 Chris Deeney, Hash Design

44 ProGUI V1.44

See Microsoft MSDN for details.

Returns zero for failure or the Button ID for success.

ToolBarEx Index
5.3.5 ToolBarSeparatorEx

ToolBarSeparatorEx()
Syntax
Success = ToolBarSeparatorEx()
Description
Adds a vertical separator to the current ToolBarEx being constructed.

Returns nonzero if successful.

ToolBarEx Index
5.3.6 ToolBarDropdownlimageButtonEx

ToolBarDropdownimageButtonEx()
Syntax

Success = ToolBarDropdownlmageButtonEx (ButtonID.l, MenulD.i, Text$, *NormallmagelD, *HotlmagelD,
*DisabledimagelD, Style.l)

Description

Adds a drop-down image button to the current ToolBarEx. This is like a normal image button except when you click
on the button it displays a popup menu just below it.

This command defaults so that the button will be drawn with a drop-down arrow in a separate section, to the right of
the button.

ButtonID specifies the internal ID to be used and if #Pr oGUI _Any is used then the returned value will be the new
Button ID. MenulD is the handle/ID of the popup menu you want to attach to the button. Text$ is displayed as the
button's label and can contain escape-code effects (see MenultemEXx for details). NormallmagelD, HotimagelD and
DisabledimagelD are pointers to image data that are used to display the button in the various states. Style.|
specifies the optional Windows flags for the button and can include any of the following:

#BTNS_WHOLEDROPDOWN - Specifies that the button will have a drop-down arrow, but not as a separate section.
#BTNS_AUTOSI ZE
#BTNS_NOPREFI X
#BTNS_SHOWTEXT

See Microsoft MSDN for details.

Returns zero for failure or the Button ID for success.

© 2025 Chris Deeney, Hash Design

Reference Manual 45

ToolBarEx Index
5.3.7 ToolBarExAttachDropdownMenu

ToolBarExAttachDropdownMenu()
Syntax
Success = ToolBarExAttachDropdownMenu(Toolbar.i, ButtonID.l, Menu.i)
Description
Attaches a drop-down popup menu to a ToolBarDropdownlimageButtonEx.

Toolbar specifies the WindowsID/ToolbarlD of the ToolBarEx. ButtonlD specifies the internal ID of the button you
want to attach the menu to. Menu is the WindowsID/MenulD of the popup menu you want to attach to the button.

Returns nonzero if successful.

ToolBarEx Index
5.3.8 ToolBarExGadget

ToolBarExGadget()

Syntax

Success = ToolBarExGadget(ButtonID.l, GadgetID.i, LeftPadding.l, TopPadding.l, RightPadding.l,
BottomPadding.l, ApplyUIStyle.b)

Description
Adds a gadget/control to the current ToolBarEx.

ButtonID specifies the internal ID to be used and if #Pr oGUI _Any is used then the returned value will be the new
Button ID. GadgetID.i is the Windows handle (HWND) of the control and can be obtained using the PureBasic
command GadgetID(). LeftPadding.l, TopPadding.l, RightPadding.| and BottomPadding.l adds padding around the
gadget/control at the desired sides (if any). ApplyUIStyle.b if set to True will render the control in the ToolBarEx's
UlIStyle if supported. Currently none-image ComboBoxes are supported.

Returns zero for failure or the Button ID for success.

ToolBarEx Index
5.3.9 InsertToolBarButtonEx

InsertToolBarButtonEx()
Syntax
Success = InsertToolBarButtonEx(Toolbar.i, Position.l, ButtonID.l, Text$, Style.l)
Description

Inserts a text button into a ToolBarEx.

© 2025 Chris Deeney, Hash Design

46 ProGUI V1.44

Toolbar.i specifies the handle/ID of the ToolBarEx you want to insert the button into. Position.| is the zero-based
index of where the button will be inserted and can be -1 in order to append the button to the end of the ToolBarEx.
ButtonID specifies the internal ID to be used and if #Pr oGUI _Any is used then the returned value will be the new
Button ID. Text$ is displayed as the button's label and can contain escape-code effects (see MenultemEx for
details). Style.l specifies the optional Windows flags for the button, please see ToolBarButtonEx for details.

Returns zero for failure or the Button ID for success.

ToolBarEx Index
5.3.10 InsertToolBarimageButtonEx

InsertToolBarlimageButtonEx()
Syntax

Success = InsertToolBarlmageButtonEx(Toolbar.i, Position.l, ButtonID.l, Text$, *NormallmagelD, *HotimagelD,
*DisabledimagelD, style.l)

Description
Inserts an image button into a ToolBarEx.

Toolbar.i specifies the handle/ID of the ToolBarEx you want to insert the button into. Position.| is the zero-based
index of where the button will be inserted and can be -1 in order to append the button to the end of the ToolBarEx.
ButtonID specifies the internal ID to be used and if #Pr oGUI _Any is used then the returned value will be the new
Button ID. Text$ is displayed as the button's label and can contain escape-code effects (see MenultemEx for
details). *NormallmagelD, *HotimagelD and *DisabledimagelD are pointers to image data that are used to display the
button in the various states. Style.l specifies the optional Windows flags for the button, please see
ToolBarlmageButtonEx for details.

Returns zero for failure or the Button ID for success.

ToolBarEx Index
5.3.11 InsertToolBarSeparatorEx

InsertToolBarSeparatorEx()
Syntax
Success = InsertToolBarSeparatorEx(Toolbar.i, Position.l)
Description
Inserts a \ertical separator into a ToolBarEx.

Toolbar.i specifies the handle/ID of the ToolBarEx you want to insert the separator into. Position.| is the zero-based
index of where the separator will be inserted and can be -1 in order to append the separator to the end of the
ToolBarEx.

© 2025 Chris Deeney, Hash Design

Reference Manual 47

Returns nonzero if successful.

ToolBarEx Index
5.3.12 InsertToolBarDropdownlmageButtonEx

InsertToolBarDropdownlmageButtonEx()

Syntax

Success = InsertToolBarDropdownlmageButtonEx(Toolbar.i, Position.l, ButtonID.l, MenulD.i, Text$,
*NormallmagelD, *HotimagelD, *DisabledimagelD, style.l)

Description

Inserts a drop-down image button into a ToolBarEx. This is like a normal image button except when you click on the
button it displays a popup menu just below it.

This command defaults so that the button will be drawn with a drop-down arrow in a separate section, to the right of
the button.

Toolbar.i specifies the handle/ID of the ToolBarEx you want to insert the button into. Position.| is the zero-based
index of where the button will be inserted and can be -1 in order to append the button to the end of the ToolBarEx.
ButtonID specifies the internal ID to be used and if #Pr oGUI _Any is used then the returned value will be the new
Button ID. MenulD is the handle/ID of the popup menu you want to attach to the button. Text$ is displayed as the
button's label and can contain escape-code effects (see MenultemEx for details). *NormallmagelD, *HotimagelD and
*DisabledimagelD are pointers to image data that are used to display the button in the various states. Style.l
specifies the optional Windows flags for the button, please see ToolBarDropdownlimageButtonEx for details.

Returns zero for failure or the Button ID for success.

ToolBarEx Index

5.3.13 InsertToolBarExGadget
InsertToolBarExGadget()

Syntax

Success = InsertToolBarExGadget(Toolbar.i, Position.l, ButtonID.I, GadgetID.i, LeftPadding.l, TopPadding.l,
RightPadding.l, BottomPadding.l, ApplyUIStyle.b)

Description
Inserts a gadget/control into a ToolBarEx.

Toolbar.i specifies the handle/ID of the ToolBarEx you want to insert the button into. Position.| is the zero-based
index of where the button will be inserted and can be -1 in order to append the button to the end of the ToolBarEx.
ButtonID specifies the internal ID to be used and if #Pr oGUI _Any is used then the returned value will be the new
Button ID. GadgetID.i is the Windows handle (HWND) of the control and can be obtained using the PureBasic
command GadgetID(). LeftPadding.l, TopPadding.l, RightPadding.| and BottomPadding.| adds padding around the
gadget/control at the desired sides (if any). ApplyUIStyle.b if set to True will render the control in the ToolBarEx's
UlIStyle if supported. Currently none-image ComboBoxes are supported.

© 2025 Chris Deeney, Hash Design

48 ProGUI V1.44

Returns zero for failure or the Button ID for success.

ToolBarEx Index

5.3.14 DisableToolbarExButton
DisableToolbarExButton()

Syntax

Success = DisableToolbarExButton(Toolbar.i, ButtonID.l, State)

Description
Disables or enables a ToolBarEx button.

Toolbar specifies the WindowsID/ToolbarlD of the ToolBarEx. ButtonlD specifies the internal ID of the button you
want to enable/disable. State can be True to disable the button or False to disable it.

Returns True if successful, or False otherwise.

ToolBarEx Index

5.3.15 SelectToolbarExButton

SelectToolbarExButton()
Syntax
Success = SelectToolbarExButton(Toolbar.i, ButtonID.|, State.b)

Description
Selects a ToolBarEx button in a checkgroup.

Toolbar specifies the WindowsID/ToolbarlD of the ToolBarEx. ButtonID specifies the internal ID of the button you
want to select. State can be nonzero to select the button or zero to deselect the button.

Returns True if successful, or False otherwise.

ToolBarEx Index

5.3.16 ChangeToolbarExButton
ChangeToolbarExButton()

Syntax
Success = ChangeToolbarExButton(Toolbar.i, ButtonID.I, Text$, *NormallmagelD, *HotimagelD,
*DisabledimagelD)

Description

Changes the text and images of the specified button on a ToolBarEXx.

© 2025 Chris Deeney, Hash Design

Reference Manual 49

Toolbar specifies the WindowsID/ToolbarlD of the ToolBarEx. ButtonlID specifies the internal ID of the button you
want to select. Text$ is displayed as the button's label and can contain escape-code effects (see MenultemEx for
details). NormallmagelD, HotimagelD and DisabledimagelD are pointers to image data that are used to display the
button in the various states (Specifying -1 will ignore the parameter and the original image data will be kept).

Returns True if successful, or False otherwise.

ToolBarEx Index

5.3.17 RemoveToolBarExButton

RemoveToolbarExButton()
Syntax
Success = RemoveToolbarExButton(Toolbar.i, ButtonID.l, byPosition.b)
Description

Remowes a button from a ToolBarEx. If the button is a gadget/control then it will also be hidden and re-parented to
the root window.

Toolbar specifies the WindowsID/ToolbarlD of the ToolBarEx. ButtonID specifies the ID or the zero-based index (if
byPosition.b = True) of the button you want to remove.

Returns True if successful, or False otherwise.

ToolBarEx Index

5.3.18 HideToolBarExButton

HideToolbarExButton()
Syntax
Success = HideToolbarExButton(Toolbar.i, ButtonID.l, Hide.b)
Description
Hides/shows a button in a ToolBarEx (if the button is a gadget/control it will be hidden/shown).

Toolbar specifies the WindowsID/ToolbarlD of the ToolBarEx. ButtonlD specifies the ID of the button you want to
hide or show. Hide.b can be True in order to hide the specified button or False to show.

Returns True if successful, or False otherwise.

ToolBarEx Index

5.3.19 ToolBarExToolTip
ToolBarExToolTip()

Syntax

© 2025 Chris Deeney, Hash Design

50 ProGUI V1.44

Success = ToolBarExToolTip(Toolbar.i, ButtonID.l, Text$)
Description
Associates a tooltip with a toolbar button.

Toolbar specifies the WindowsID/ToolbarlD of the ToolBarEx. ButtonlD specifies the internal ID of the button you
want to associate the tooltip with. Text$ specifies the tooltip text you want to display. ToolbarExToolTip can be
called again on an already defined tooltip in order to replace the associated Text$. Specifying Text$ as an empty
string will remowve the tooltip.

Returns True if successful, or False otherwise.

ToolBarEx Index

5.3.20 ToolBarExToolTipDelay
ToolBarExToolTipDelay()

Syntax
Success = ToolBarExToolTipDelay(toolbar.i, Initial.l, Autopop.|, Reshow.l)
Description
Sets the ToolTip delay values of a ToolbarEx (in milliseconds) specified by toolbar.i which can be a handle or ID.

Initial.l sets the amount of time the mouse pointer must remain stationary within the ToolBarEx's button before the
tooltip window appears. To return the initial delay time to its default value, set Initial.l to -1.

Autotpop.| sets the amount of time a tooltip window remains visible if the mouse pointer is stationary within a
ToolBarEx's button. To return the autopop delay time to its default value, set Autopop.! to -1.

Reshow.| sets the amount of time it takes for subsequent tooltip windows to appear as the mouse pointer moves
from one ToolbarEx button to another. To return the reshow delay time to its default value, set Reshow.l to -1.

Returns true for success or zero for failure.

ToolBarEx Index

ToolBarExButtonWidth()

Syntax
Width.I = ToolBarExButtonWidth(Toolbar.i, ButtonID.I)
Description
Returns the width in pixels of a ToolbarEx button/gadget-space specified by Toolbar.i (which can be a handle or ID of

the ToolBarEx) and ButtonID.l.

ToolBarEx Index

© 2025 Chris Deeney, Hash Design

Reference Manual 51

5.3.22 ToolBarExHeight
ToolBarExHeight()

Syntax

Height.l = ToolBarExHeight(Toolbar.i)

Description

Returns the height of a ToolbarEx in pixels specified by Toolbar.i which can be a handle or ID.

ToolBarEx Index

‘

3.23 SetToolBarExButtonWidth
SetToolBarExButtonWidth()
Syntax
Success = SetToolBarExButtonWidth(Toolbar.i, ButtonID.I, Width.I)
Description

Sets the width of a ToolbarEx button/gadget.

Toolbar.i is the handle or ID of the ToolBarEx and ButtonID.| is the ID of the button you would like to set the width for.
Width.I is the new width of the button in pixels.

Returns True for success, zero for failure.

ToolBarEx Index

‘

.3.24 SetToolBarExHeight
SetToolBarExHeight()

Syntax
Success = SetToolBarExHeight(Toolbar.i, Height.I)

Description
Sets the height of a ToolbarEx.

Toolbar.i is the handle or ID of the ToolBarEx. Height.l is the new height of all the buttons in pixels.

Returns True for success, zero for failure.

ToolBarEx Index

© 2025 Chris Deeney, Hash Design

52 ProGUI V1.44

5.3.25 DisableToolBarExButtonFade
DisableToolBarExButtonFade()

Syntax
Success = DisableToolBarExButtonFade(Toolbar.i)
Description

Disables the fade animation of ToolBarEx buttons under Windows 7/Vista. Toolbar.i is the handle or ID of the
ToolBarEx.

Returns True if successful, or False otherwise.

ToolBarEx Index

5.3.26 ToolBarExID

ToolBarExID()
Syntax
WindowsID = ToolBarExID(ID.I)
Description

Returns the Windows ID of the specified ToolBarEx.

ToolBarEx Index

5.3.27 ToolBarExGadgetID

ToolBarExGadgetID()
Syntax
WindowsID = ToolBarExGadgetID(Toolbar.i, ButtonID.I)
Description
Returns the Windows ID (HWND) of the specified ToolBarEx gadget/control (ButtonID.l). Toolbar.i can be a handle or

ID of the ToolBarEx.

ToolBarEx Index

5.3.28 FreeToolBarEx

FreeToolBarEx()

Syntax
Success = FreeToolBarEx(Toolbar.i)

Description

© 2025 Chris Deeney, Hash Design

Reference Manual 53

Remowes the specified ToolBarEx from memory freeing any memory used. If the ToolBarEx contains any
gadgets/controls then they will also be hidden and re-parented to the root window. Toolbar.i can be a WindowsID or

ToolBarEx ID or -1 in order to free all ToolBarEx's.

Returns True if successful, or False otherwise.

ToolBarEx Index

© 2025 Chris Deeney, Hash Design

54 ProGUI V1.44

54 Rebar
ProGUI - Rebar

! Fle Edit View Insert Format Toole Table Window Help ’

& AV & & a@B S - -8 EE

Overview

Rebars act as containers for other controls such as toolbars. The controls are contained in bands which can be
resized and moved. ProGUI extends the functionality of rebars by adding automatic vertical resizing, new rendering
styles and manual resizing of bands with the mouse plus full automatic chewron support. Rebars also support styles
in Office 2007 and Office 2003.

Command Index

CreateRebar
SetRebarStyle
AddRebarGadget
InsertRebarGadget
ShowRebarBand
MoveRebarBand
DeleteRebarBand
RebarHeight
RebarlD
RebarBandID
SaveRebarlLayout
LoadRebarLayout
SetRebarUserCallback
FreeRebar

Reference Manual - Index
54.1 CreateRebar

CreateRebar()
Syntax
WindowsID = CreateRebar(ID.l, WindowlID.i, *Backgroundimage, Style.l, Doublebuffer.b)
Description

Creates an empty Rebar in the window specified by WindowID. ID is the internal ID to be used and if #Pr oGUI _Any is
used then the returned value will be the new Rebar ID.

© 2025 Chris Deeney, Hash Design

Reference Manual 55

Backgroundimage is optional and can point to image data used as the Rebar's background.

If Style contains the flag #Ul STYLE_OFFI CE2003, #Ul STYLE_OFFI CE2007 the rebar is rendered in the new Office

2003/2007 style.
Please also see SetUIColour for changing the colours used in the various styles to your own custom colours.

Style can also contain optional flags, see Microsoft MSDN for details: -

http://msdn.microsoft.com/en-us/library/bb774377(VS.85).aspx

Specify Doublebuffer as true in order to enable double buffering of rebars. Note bare in mind double buffering uses
more memory and large Rebars can be very slow at refreshing. Double buffering isn't really necessary unless you

want to eliminate all minor flickering.
Returns the Windows ID of the Rebar (or if #Pr oGUI _Any is used the Rebar ID) or zero for failure.

Whenewer the Rebar is updated ProGUI will send a #REBAR_UPDATED event message to the main window's message
gueue. The wParam contains the new height of the Rebar and the IParam contains a handle to the Rebar that

triggered the event.
Alternatively a user callback can be set instead with SetRebarUserCallback, this will also receive the

#REBAR_UPDATED event message whenever the Rebar is updated.

Rebar Index
5.4.2 SetRebarStyle
SetRebarStyle()
Syntax
Success = SetRebarStyle(Rebar.i, Style.l)
Description
Used to change a previously created Rebar's graphical style.

Rebar.i is the ID or Handle of the rebar. Style.l specifies a User Interface graphical style constant, see CreateRebar
for details.

Returns true for success or false for failure.

Rebar Index
5.4.3 AddRebarGadget
AddRebarGadget()

Syntax
BandID = AddRebarGadget(GadgetID.l, Text$, Width.l, MinWidth.I, Height.l, *Backgroundimage, Style.l)

Description

Adds a gadget to the previously created Rebar.

© 2025 Chris Deeney, Hash Design

56 ProGUI V1.44

GadgetID specifies the Windows ID of a gadget(control/window). Text$ specifies the label that will appear on the
band. Width is the desired width of the band, MinWidth is the minimum width the band can be resized to and Height
is the desired height of the band.

Backgroundimage is optional and can point to image data used as the Rebar Band's background.

Style can contain optional flags, see Microsoft MSDN for details: http://msdn.microsoft.com/en-
us/library/bb774393(VS.85).aspx

Also, Style can contain these ProGUI specific flags:

#RBBS_SI ZEABLE - Automatically resizes the band to fit nost of the w ndow.
#RBBS_VERTI CALRESI ZEABLE - Al'l ows manual user vertical resizing of the band.

#RBBS_F| XEDBMP - When Backgroundl nage points to inmage data this flag will keep the background in a fixe

Returns the Band ID of the Rebar or -1 for failure.

Rebar Index
5.4.4 InsertRebarGadget
InsertRebarGadget()
Syntax
BandID = InsertRebarGadget(Rebar.i, Band.l, GadgetID.l, Text$, Width.l, MinWidth.I, Height.l, *Backgroundimage,
Style.l)
Description

Inserts a gadget into a previously created Rebar.

Rebar.i is the ID/Handle of the Rebar you wish to insert the gadget into. Band.| is the Index/ID of the band you wish
to insert the new gadget before and can be -1 in order to insert the gadget on a new band at the end of the Rebar.

GadgetID specifies the Windows ID of a gadget(control/window). Text$ specifies the label that will appear on the
band. Width is the desired width of the band, MinWidth is the minimum width the band can be resized to and Height
is the desired height of the band.

Backgroundimage is optional and can point to image data used as the Rebar Band's background.

Style can contain optional flags, see Microsoft MSDN for details: http://msdn.microsoft.com/en-
us/library/bb774393(VS.85).aspx

Also, Style can contain these ProGUI specific flags:

#RBBS_SI ZEABLE - Automatically resizes the band to fit mpst of the w ndow.
#RBBS_VERTI CALRESI ZEABLE - Al'l ows manual user vertical resizing of the band.

#RBBS_F| XEDBMP - When Backgroundl nage points to inmage data this flag will keep the background in a fixe

Returns the new Band ID of the rebar or -1 for failure.

Rebar Index

© 2025 Chris Deeney, Hash Design

Reference Manual 57

545 ShowRebarBand
ShowRebarBand()

Syntax
Success = ShowRebarBand(Rebar.i, Band.i, State)
Description

Shows or hides a Rebar band.

Rebar.i is the ID or Handle of the Rebar. Band.i specifies the band you want to show/hide and can be an index or ID.
State specifies the \visibility of the band and can be nonzero for visible or zero for hidden.

Returns zero for failure.

Rebar Index

546 MoveRebarBand
MoveRebarBand()

Syntax
Success = MoveRebarBand(Rebar.i, SourceBandindex.l, DestinationBandindex.|)

Description
Mowes a Rebar band to a hew zero based index position.

Rebar.i is the ID/Handle of the Rebar. SourceBandindex.| is the zero based position of the band that you wish to
mowe. DestinationBandindex.l is the destination zero based position.

Returns nonzero for success, zero for failure.

Rebar Index
547 DeleteRebarBand

DeleteRebarBand|()

Syntax
Success = DeleteRebarBand(Rebar.i, Band.l)

Description
Deletes a Rebar band.

Rebar.i is the ID or Handle of the Rebar. Band.| specifies the band you want to delete and can be an index or ID.

Returns true for success or zero for failure.

© 2025 Chris Deeney, Hash Design

58 ProGUI V1.44

Rebar Index
5.4.8 RebarHeight

RebarHeight()

Syntax
Height.l = RebarHeight(Rebar.i)

Description

Returns the height in pixels of a Rebar. Rebar.i can either be a handle to the Rebar or an internal ID.

Rebar Index
549 RebarlD
RebarlD()
Syntax
WindowsID.l = RebarID(ID.I)
Description
Returns the Windows ID of a Rebar's internal ID.
Rebar Index

5.4.10 RebarBandID

RebarBandID()

Syntax
BandID.| = RebarBandID(Rebar.i, Index.l)
Description

Returns the ID of a Rebar's band.

Rebar.i is the ID/Handle of the Rebar. Index.l is the zero based position of the band.

Rebar Index

5.4.11 SaveRebarLayout

SaveRebarLayout()
Syntax

Success = SaveRebarLayout(Rebar.i, Path.s)

© 2025 Chris Deeney, Hash Design

Reference Manual 59

Description

Saves the layout of a Rebar's bands in XML format to the file specified in Path.s

Rebar.i is the ID/Handle of the Rebar. Path.s specifies where and what the Rebar layout will be saved as.

Returns true for success, zero for failure.

Rebar Index

5.4.12 LoadRebarLayout

LoadRebarLayout()
Syntax

Success = LoadRebarLayout(Rebar.i, LayoutFilename.s)
Description

Loads a previously saved Rebar's layout.

Rebar.i is the ID/Handle of the Rebar to update. LayoutFilename.s specifies the Rebar layout file to be loaded.

Returns true for success, zero for failure.

Rebar Index

5.4.13 SetRebarUserCallback
SetRebarUserCallback()

Syntax
*oldCallback = SetRebarUserCallback(Rebar.i, *UserCallback)
Description
Sets a Rebar's user callback procedure, used for notification of when a Rebar is updated or height changes.

Rebar.i is the ID/Handle of the rebar. *UserCallBack must point to a procedure in your code with the following
structure: -

Procedure nyRebar Cal | back(wi ndow, message, wParam | Param
Sel ect message
Case #REBAR_UPDATED
Resi zeGadget (gadget, 0, wParam W ndowW dt h(#W ndow_0), W ndowHei ght (#W ndow_0) - wPar am)
EndSel ect

EndPr ocedure

© 2025 Chris Deeney, Hash Design

60 ProGUI V1.44

Whenewer the Rebar is updated ProGUI will send a #REBAR_UPDATED event message to the user callback. The
wParam contains the new height of the Rebar and the IParam contains a handle to the Rebar that triggered the event.

Returns a pointer to the old user callback (zero if there wasn't one) or -1 for failure.

Rebar Index
5.4.14 FreeRebar
FreeRebar()

Syntax
Success = FreeRebar(Rebar.i)
Description
Frees a Rebar from memory.
Rebar.i is the ID or Handle of the Rebar you wish to free. Rebar.| can also be -1 in order to free all Rebars.

Returns true for success or zero for failure.

Rebar Index

© 2025 Chris Deeney, Hash Design

Reference Manual 61

55 TextControlEx
ProGUI - TextControlEx

IRC Proxy

Overview

TextControlEx is an advanced static text/textbox control and allows your application to display text labels with the
following features: Transparent background (no ugly solid background colour), coloured text and background,
gradient coloured backgrounds, anti-aliased text, border padding, multi-line support, hyperlinks and "escape code"
effects such as bold, italic, underline...

Command Index

TextControlEx
SetTextControlExPadding
SetTextControlExFont
SetTextControlExColour
SetTextControlExGradient
SetTextControlExLinePadding
SetTextControlExText
GetTextControlExText
SetTextControlExStyle
SetTextControlExDimensions
TextControlExWidth
TextControlExHeight
TextControlExCalcSize
TextControlExID
FreeTextControlEx

Reference Manual - Index
55.1 TextControlEx

TextControlEx()
Syntax
WindowsID = TextControlEx(Window.i, ID.I, X, Y, Width.l, Height.l, Text$, Flags.l)
Description
Displays a text label (transparent by default) in the specified Window.

ID specifies the internal ID of the text label and if #Pr oGUI _Any is used then the returned value will be the new
TextControlEx ID. X Y, Width and Height are the position and dimensions of the label in the window. If Width or
Height are null then the corresponding dimensions are calculated automatically. Text$ specifies what is displayed in
the label. Flags can include the following:

Flag Description
#TCX_BK_FI LL background is a solid fill. see SetTextControlExColour

© 2025 Chris Deeney, Hash Design

62 ProGUI V1.44

#TCX_BK_GRADI ENT background is a gradient fill. see SetTextControlExGradient

#TCX_CENTRE text is centered horizontally

#TCX_RI GHT text is right aligned

#TCX_VCENTRE text is centered vertically

#TCX_END_ELLI PSI' S if the end of a line of text does not fit in the specified width/height dimensions, it is

truncated and ellipses are added.

#TCX_PATH_ELLI PSI S If a text line contains backslash (\', escapecode: \\') characters in a block (e.g. a
file path), #TCX_PATH_ELLI PSI S preserves as much as possible of the text after the
last backslash by replacing characters in the middle of the line with ellipses so that
the result fits in the specified width/height dimensions.

#TCX_DI SABLE_ESCAPECODES disables processing and rendering of escape codes.

#TCX_| GNORE_COLOR_ESCAPEC ignores rendering of colour escape codes, useful for displaying all text as one colour
for example, a disabled state.

Text$ can also contain the following "escape code" effects: -

Escape Code Description Example
\b Applies the Bold effect to any text after this escape "This is an \bexample\b label"
code.
\i Applies the Italic effect to any text after this "This is an \iexample\i label"

escape code.

\u Applies the Underline effect to any text after this "This is an \uexample\lu label"
escape code.

\s Applies the Strike Through effect to any text after "This is an \sexample\s label"
this escape code.

\c Changes the colour of any text after this escape "This is an \cff0000example\n label"
code. The escape code should be followed by 6
characters representing the hexadecimal value of the
colour. \n' should be used to cancel the colour.

\n This escape code cancels any active effectsand "This is an \u\bexample\n label"
displays the preceding text as Normal.

\| New line escape code, any preceding textis ona "This is the first line\|Second line!"
new line.

\l The Link escape code allows you to include Basic blue link example: -

hyperlinks in the text. The escape code should be
immediately followed by a numeric ID which will be "\I123\c0000ffthis is a link\n\I"
used to identify the link.
Blue link with underline hover state: -
Any text following the ID will be displayed as the link
up until a single terminating "\I" link code is "\I123\c0000ffthis is a link\n|
encountered. An optional "|" character can be placed \c0000ff\uthis is a link\n\I"
in the link text in order to "divide" the text into text
for normal state and text for the hover state.

© 2025 Chris Deeney, Hash Design

Reference Manual 63

When the link is clicked on or in the mouse hover
state, ProGUI will send a #TCX_LI NK_CLI CK or
#TCX_LI NK_HOVER event message to the
TextControlEx's parent window. The Wparam of the
event message is the ID of the link that was clicked
on or in the hover state.

Returns the Windows ID of the TextControlEx (or if #Pr oGUI _Any is used the TextControlEx ID) or zero for failure.

Note: If a backslash (\") needs to be displayed in Text$ then a double backslash (\\') will display a single backslash.

TextControlEx Index
5.5.2 SetTextControlExPadding

SetTextControlExPadding()
Syntax
Success = SetTextControlExPadding(ID.i, LeftPadding.l, TopPadding.|, RightPadding.l, BottomPadding.l)
Description
Alters the border padding of a TextControlEX.

ID is the Handle/ID of a previously created TextControlEx or can be -1 in order to set the padding for all
TextControlEx's created after this command.

Returns true for success or zero for failure.

TextControlEx Index
55.3 SetTextControlExFont

SetTextControlExFont()
Syntax
Success = SetTextControlExFont(ID.i, FontID.i, Antialiased.b)
Description
Sets the font and anti aliased state of a TextControlEX.

ID is the handle/ID of a previously created TextControlEx or can be -1 in order to set the font for all TextControlEx's
created after this command.

FontID must be the handle/ID of a previously loaded font. Antialiased specifies whether the text has smoothed
edges and can be 1 for active or O for inactive.

Returns true for success or zero for failure.

TextControlEx Index

© 2025 Chris Deeney, Hash Design

64 ProGUI V1.44

554 SetTextControlExColour
SetTextControlExColour()
Syntax
Success = SetTextControlExColour(ID.i, TextColour.l, BackColour.l)
Description
Sets the foreground and background colour of a TextControlEx.

ID is the handle/ID of a previously created TextControlEx or can be -1 in order to set the colour for all TextControlEx's
created after this command.

Returns true for success or zero for failure.

TextControlEx Index
555 SetTextControlExGradient

SetTextControlExGradient()
Syntax
Success = SetTextControlExGradient(ID.i, Gradient.i)
Description
Sets the gradient background colour fill of a TextControlEX.
ID is the handle/ID of a previously created TextControlEx or can be -1 in order to set the gradient for all
TextControlEx's created after this command.

Gradient.i is a handle to a previously created Gradient.

Returns true for success or zero for failure.

TextControlEx Index
5.5.6 SetTextControlExLinePadding

SetTextControlExLinePadding()
Syntax
Success = SetTextControlExLinePadding(ID.i, Padding.l)
Description
Sets the line padding of a multi-line TextControlEx.

ID is the handle/ID of a previously created TextControlEx or can be -1 in order to set the line padding for all
TextControlEx's created after this command.

Returns true for success or zero for failure.

© 2025 Chris Deeney, Hash Design

Reference Manual 65

55.7 SetTextControlExText

Syntax

TextControlEx Index

SetTextControlExText()

Success = SetTextControlExText(ID.i, Text$)

Description

Alters the text of a previously created TextControlEx.

Returns true for success or zero for failure.

55.8 GetTextControlExText

Syntax

TextControlEx Index

GetTextControlExText()

Text$ = GetTextControlExText(ID.i)

Description

Returns the text of a TextControlEx.

ID.i is the handle/ID of the TextControlEx.

TextControlEx Index

55.9 SetTextControlExStyle

Syntax

SetTextControlExStyle()

Success = SetTextControlExStyle(ID.i, Style.l)

Description

Sets the style of a previously created TextControlEx. ID is the Handle or ID of a previously created TextControlEXx.

Style.l can be any of the following flags: -

Flag
#TCX_BK_FI LL

#TCX_BK_GRADI ENT
#TCX_CENTRE
#TCX_RI GHT

Description

background is a solid fill. see SetTextControlExColour
background is a gradient fill. see SetTextControlExGradient
text is centered horizontally

text is right aligned

© 2025 Chris Deeney, Hash Design

66 ProGUI V1.44

#TCX_VCENTRE
#TCX_END_ELLI PSI S

#TCX_PATH_ELLI PSI S

text is centered vertically

if the end of a line of text does not fit in the specified width/height dimensions, it is
truncated and ellipses are added.

If a text line contains backslash (\', escapecode: \\') characters in a block (e.g. a
file path), #TCX_PATH_ELLI PSI S preserves as much as possible of the text after the
last backslash by replacing characters in the middle of the line with ellipses so that
the result fits in the specified width/height dimensions.

#TCX_DI SABLE_ESCAPECODES disables processing and rendering of escape codes.

#TCX_| GNORE_COLOR_ESCAPEC ignores rendering of colour escape codes, useful for displaying all text as one colour

for example, a disabled state.

Returns true for success or zero for failure.

TextControlEx Index

5.5.10 GetTextControlExStyle

Syntax

GetTextControlExStyle()

StyleFlags.| = GetTextControlExStyle(ID.i)

Description

Returns the style flags of a previously created TextControlEx or zero for failure. ID is the Handle or ID of a previously

created TextControlEX.

StyleFlags.| can be any of the following flags: -

Flag

#TCX_BK_FI LL
#TCX_BK_GRADI ENT
#TCX_CENTRE
#TCX_RI GHT
#TCX_VCENTRE
#TCX_END_ELLI PSI S

#TCX_PATH_ELLI PSI S

Description

background is a solid fill. see SetTextControlExColour
background is a gradient fill. see SetTextControlExGradient
text is centered horizontally

text is right aligned

text is centered vertically

if the end of a line of text does not fit in the specified width/height dimensions, it is
truncated and ellipses are added.

If a text line contains backslash (\', escapecode: \\') characters in a block (e.g. a
file path), #TCX_PATH_ELLI PSI S preserves as much as possible of the text after the
last backslash by replacing characters in the middle of the line with ellipses so that
the result fits in the specified width/height dimensions.

#TCX_DI SABLE_ESCAPECCDES disables processing and rendering of escape codes.

#TCX_| GNORE_COLOR_ESCAPEC jgnores rendering of colour escape codes, useful for displaying all text as one colour

for example, a disabled state.

TextControlEx Index

© 2025 Chris Deeney, Hash Design

Reference Manual 67

55.11 SetTextControlExDimensions

SetTextControlExDimensions()

Syntax

Success = SetTextControlExDimensions(ID.i, Width.l, Height.l)
Description

Alters the width and/or height of a TextControlEx.

ID is the Handle/ID of a previously created TextControlEx. Width.I and/or Height.l can be null in order for the new
dimensions to be automatically calculated and set.

Returns true for success or zero for failure.

TextControlEx Index
5.12 TextControlExWidth

‘

TextControlExWidth()
Syntax

Width = TextControlExWidth(ID.i)
Description
Returns the width in pixels of a TextControlEx.

ID.i is the handle/ID of the TextControlEx.

TextControlEx Index
5.13 TextControlExHeight

‘

TextControlExHeight()
Syntax

Height = TextControlExHeight(ID.i)

Description

Returns the height in pixels of a TextControlEX.

ID.i is the handle/ID of the TextControlEx.

TextControlEx Index

© 2025 Chris Deeney, Hash Design

68 ProGUI V1.44

5.5.14 TextControlExCalcSize
TextControlExCalcSize()

Syntax
Success = TextControlExCalcSize(ID.i, Text.s, *Width, *Height)
Description
Calculates the width and height in pixels of a TextControlEx using the specified Text.s string.

ID.i is the handle/ID of the TextControlEx. *Width and *Height are pointers to variables that will receive the new
dimensions.

Returns true for success or zero for failure.

TextControlEx Index
55.15 TextControlEXID

TextControlEXID()
Syntax
WindowsID = TextControl ExID(ID.I)
Description

Returns the Windows handle of a previously created TextControlEX.

TextControlEx Index
55.16 FreeTextControlEx

FreeTextControlEx()

Syntax
Success = FreeTextControl Ex(ID.i)
Description
Frees a TextControlEx from memory.
ID.i is the ID/Windows Handle of the TextControlEx you wish to free or -1 in order to free all TextControlEXx's.

Returns true for success or zero for failure.

TextControlEx Index

© 2025 Chris Deeney, Hash Design

Reference Manual 69

5.6 PanelEx
ProGUI - PanelEx

[Preferences

G General IRC Proxy
e_\j, Connection
"-:g IRC Proxy Proxy Server Settings
&3 DCC Proxy (%) Mo Firewall Host |
& Transfers
Ht Port
i Jﬂppeamnce {:} p-proxy I:I
() Socks4-proxy
() Socks5-proxy

Authentication Settings
Authentication

|User Mame

Password

| ok || cancel

Overview

PanelEx is a fully nestable, powerful and versatile container control with multiple pages; ideal for displaying
different sets of controls depending on user input such as a preferences section in your application or can be
easily used as a building block for other more complex controls. Each page can have a different gradient/theme
background and/or combined with a background image, alpha masked image border and optional second overlay
background and/or image combo, each page also supports automatic scrolling of page contents and automatic
double buffering of ProGUI components inside including any graphical alpha effects.

Command Index

CreatePanelEx
AddPanelExPage
AddPanelExImagePage
InsertPanelExPage
InsertPanelExIimagePage

© 2025 Chris Deeney, Hash Design

70 ProGUI V1.44

SetPanelExUsercallback
GetPanelExUsercallback
SetPanelExPageBackground
SetPanelExPageBorder
SetPanelExPageAlpha
SetPanelExPageScrolling
GetPanelExPageScrolling
SetPanelExPageCursor
GetPanelExBitmap
GetPanelExDC
RefreshPanelEx
ShowPanelExPage
PanelExWidth
PanelExHeight

PanelExID
PanelExPagelndex
FreePanelExPage
FreePanelEx

Reference Manual - Index

5.6.1 CreatePanelEx
CreatePanelEx()
Syntax
WindowsID.i = CreatePanelEx(PanellD.l, WindowlID.i, X1, Y.I, Width.I, Height.l, *UserCallback)
Description
Creates an empty PanelEx container in the current WindowID.i at the specified coordinates and dimensions.

PanellD.| specifies the internal ID of the PanelEx and if #Pr oGUI _Any is used then the returned value will be the new
PanelEx ID.

A page must then be added to the empty PanelEx after it is created using either AddPanelExPage,
AddPanelExImagePage, InsertPanelExPage or InsertPanelEximagePage. Once a page has been added to the
PanelEXx, other controls can then be added/created to that page. To swap the currently displayed page in the
PanelEx, use ShowPanelExPage.

*UserCallback is optional and if nonzero then it must point to a user defined procedure. The UserCallback gets
passed all the PanelEx's Windows messages allowing you to use the PanelEx as a building block for creating other
controls. The *UserCallBack procedure is defined by the following:

Procedure nypanel cal | back(w ndow, message, wParam | Param)

The #WM_ERASEBKGND and #\WM_PAI NT messages work a bit differently in the UserCallback. The #\Ww ERASEBKGND
message when processed allows you to draw after the PanelEx page background has been rendered and the
#WM_PAI NT message allows you to draw in the foreground of the PanelEx page (after all other controls inside the
page and background have been rendered). In both messages the window parameter contains a handle to the page,
wParam contains the hdc buffer and IParam contains a handle to the PanelEx. Also, all user drawing in the callback
is automatically double-buffered.

© 2025 Chris Deeney, Hash Design

Reference Manual 71

An example of using the UserCallback feature is automatic resizing of a PanelEx contents when it's resized, the
following demonstrates automatic resizing of a Listlcon gadget inside a PanelEx Page when the PanelEx size is
changed: -

Procedure nyPanel Cal | back(wi ndow, message, wParam | Param
Sel ect nessage
Case #WM_SI ZE
MoveW ndow_(Gadget | D(#Li stlcon_1), 0O, 0, LWord(l Param, HWord(I Param ,h6 #Fal se)
EndSel ect

EndPr ocedur e

Returns the Windows ID (HWND) of the PanelEx (or if #Pr oGUI _Any is used the PanelEx ID) or zero for failure.

PanelEx Index

5.6.2 AddPanelExPage

AddPanelExPage()

Syntax
WindowsID.i = AddPanelExPage(Background.i)
Description

Adds an empty page to the current PanelEx container. Any gadgets created after this command will be added to
the page.

Background.i can be a gradient or a number from -1 to 11 which selects the style of the theme background for the
panel:

Background.l Theme

No theme background.

Default tabbed background.

Blue slight ertical gradient.

Blue horizontal gradient.

Light blue solid.

Light blue horizontal gradient.

Light blue slight vertical gradient.

Dark blue slight vertical gradient.

Rebar background.

System push button normal background.
System push button hot background.
System push button pressed background.
System push button disabled background.

©o~NOOhAWNRE O

ol
= o

Note the theme descriptions are based on WindowsXP Blue visual Style
and may vary in appearance depending on the user's theme settings.

© 2025 Chris Deeney, Hash Design

72 ProGUI V1.44

Returns the Windows ID (HWND) of the newly created PanelEx page or zero for failure.

PanelEx Index

5.6.3 AddPanelExImagePage

AddPanelExImagePage()
Syntax

WindowsID.i = AddPanelExImagePage(Background.i, *Backgroundimg, ImageXl, ImageY.l, ImageWidth.l,
ImageHeight.l, Style.l)

Description

Adds an empty image page to the current PanelEx container. Any gadgets created after this command will be
added to the page.

Background.i can be a gradient or a number from -1 to 11 which selects the style of the theme background for the
panel:

Background.l Theme
No theme background.
Default tabbed background.
Blue slight vertical gradient.
Blue horizontal gradient.
Light blue solid.
Light blue horizontal gradient.
Light blue slight vertical gradient.
Dark blue slight vertical gradient.
Rebar background.
System push button normal background.
System push button hot background.
0 System push button pressed background.
1 System push button disabled background.

1
[N

P RPOO0ONOOODMWNEO

Note the theme descriptions are based on WindowsXP Blue visual Style
and may vary in appearance depending on the user's theme settings.

*Backgroundimg points to the image data you want to display.
ImageX|, ImageY.l, ImageWidth.I and ImageHeight.| are the coordinates and dimensions of the image to be
displayed on the page. If ImageWidth.l or ImageHeight.l are zero then they default to the dimensions of the

PanelEx.

Style.l can be any of the following flags:

Flag Description

#PNLX_CENTRE centres the image horizontally on the page bypassing the ImageX| value.
#PNLX_VCENTRE centres the image ertically on the page bypassing the ImageY.| value.
#PNLX_RI GHT aligns the image from the right of the panel.

#PNLX_BOTTOM aligns the image from the bottom of the panel.

© 2025 Chris Deeney, Hash Design

Reference Manual 73

#PNLX_HREPEAT repeats the image along the horizontal axis bypassing the ImageX| value.
#PNLX_VREPEAT repeats the image along the ertical axis bypassing the ImageY.| value.
#PNLX_TI LE tiles the image ower the panel bypassing the ImageX| and ImageY .| values.
#PNLX_STRETCH stretches the image to fill the panel bypassing the ImageXl, ImageY I,

ImageWidth.I and ImageHeight.| values. Use sparingly as this style is pretty
slow to render.

#PNLX_PERCENT positions the image as a percentage of the panel size, ImageX| and ImageY.l
must be <= 100.

#PNLX_HPERCENT positions the image horizontally as a percentage of the panel size, ImageX|
must be <= 100.

#PNLX_VPERCENT positions the image horizontally as a percentage of the panel size, ImageX|
must be <= 100.

#PNLX_MASKED displays the image with colour white (#FFFFFF, RGB:255,255,255) as

transparent, useful for displaying JPEG files with transparency or other
formats that don't have an alpha channel.

#PNLX_NOCLI P when inside another PanelEXx, this flag disables render clipping of the page's
contents to the size of this PanelEx bounding rectangle.

#PNLX_TRANSPARENT if the PanelEXx is inside another control this flag will make the page's mouse
input "transparent”, meaning that the parent control receives all it's messages
even when the mouse is over the PanelEx.

#PNLX_NOGADGETLI ST this is a PureBasic only flag and tells the PanelEx not to create a GadgetList
for the page.

Returns the Windows ID (HWND) of the newly created PanelEx page or zero for failure.

PanelEx Index
5.6.4 InsertPanelExPage

InsertPanelExPage()
Syntax
WindowsID.i = InsertPanelExPage(Panel.i, Page.i, Background.i)
Description

Inserts an empty page into the specified PanelEx container. Any gadgets created after this command will be added
to the page.

Panel.i is the ID/Handle of the PanelEx and Page.i is the Index/ID of the page that the new page will be inserted
before. Page.l can also be -1 in order to add the new page after the last page.

Background.i can be a gradient or a number from -1 to 11 which selects the style of the theme background for the

panel:
Background.| Theme
-1 No theme background.
0 Default tabbed background.

© 2025 Chris Deeney, Hash Design

74 ProGUI V1.44

Blue slight vertical gradient.

Blue horizontal gradient.

Light blue solid.

Light blue horizontal gradient.

Light blue slight vertical gradient.

Dark blue slight vertical gradient.

Rebar background.

System push button normal background.
System push button hot background.
System push button pressed background.
System push button disabled background.

P PO ~NOODWNE

= O

Note the theme descriptions are based on WindowsXP Blue visual Style
and may vary in appearance depending on the user's theme settings.

Returns the Windows ID (HWND) of the newly created PanelEx page or zero for failure.

PanelEx Index
5.6.5 InsertPanelExImagePage

InsertPanelEximagePage()
Syntax

WindowsID.i = InsertPanelExImagePage(Panel.i, Page.i, Background.i, *Backgroundimg, ImageXl, ImageY I,
ImageWidth.l, ImageHeight.I, Style.l)

Description

Inserts an empty image page into the current PanelEx container. Any gadgets created after this command will be
added to the page.

Panel.i is the ID/Handle of the PanelEx and Page.i is the Index/ID of the page that the new page will be inserted
before. Page.l can also be -1 in order to add the new page after the last page.

Background.i can be a gradient or a number from -1 to 11 which selects the style of the theme background for the
panel:

Background.| Theme

No theme background.

Default tabbed background.

Blue slight vertical gradient.

Blue horizontal gradient.

Light blue solid.

Light blue horizontal gradient.

Light blue slight vertical gradient.

Dark blue slight vertical gradient.

Rebar background.

System push button normal background.
System push button hot background.
System push button pressed background.
System push button disabled background.

P E2O00~NOO~wNERE O/

= O

© 2025 Chris Deeney, Hash Design

Reference Manual 75

Note the theme descriptions are based on WindowsXP Blue visual Style
and may vary in appearance depending on the user's theme settings.

*Backgroundimg points to the image data you want to display.

ImageXl, ImageY.l, ImageWidth.l and ImageHeight.| are the coordinates and dimensions of the image to be
displayed on the page. If ImageWidth.l or ImageHeight.l are zero then they default to the dimensions of the

PanelEXx.

Style.l can be any of the following flags:

Flag
#PNLX_CENTRE

#PNLX_VCENTRE
#PNLX_RI GHT
#PNLX_BOTTOM
#PNLX_HREPEAT
#PNLX_VREPEAT
#PNLX_TI LE
#PNLX_STRETCH

#PNLX_PERCENT

#PNLX_HPERCENT

#PNLX_VPERCENT

#PNLX_MASKED

#PNLX_NOCCLI P

#PNLX_TRANSPARENT

#PNLX_NOGADGETLI ST

Description

centres the image horizontally on the page bypassing the ImageX.| value.
centres the image vertically on the page bypassing the ImageY.| value.
aligns the image from the right of the panel.

aligns the image from the bottom of the panel.

repeats the image along the horizontal axis bypassing the ImageX| value.
repeats the image along the vertical axis bypassing the ImageY.| value.
tiles the image ower the panel bypassing the ImageX| and ImageY .| values.

stretches the image to fill the panel bypassing the ImageX|, ImageY.l,
ImageWidth.| and ImageHeight.I values. Use sparingly as this style is pretty
slow to render.

positions the image as a percentage of the panel size, ImageX| and ImageY.l
must be <= 100.

positions the image horizontally as a percentage of the panel size, ImageX|
must be <= 100.

positions the image horizontally as a percentage of the panel size, ImageX|
must be <= 100.

displays the image with colour white (#FFFFFF, RGB:255,255,255) as
transparent, useful for displaying JPEG files with transparency or other
formats that don't have an alpha channel.

when inside another PanelEx, this flag disables render clipping of the page's
contents to the size of this PanelEx bounding rectangle.

if the PanelEx is inside another control this flag will make the page's mouse
input "transparent”, meaning that the parent control receives all it's messages
even when the mouse is over the PanelEx.

this is a PureBasic only flag and tells the PanelEx not to create a GadgetList
for the page.

Returns the Windows ID (HWND) of the newly created PanelEx page or zero for failure.

PanelEx Index

© 2025 Chris Deeney, Hash Design

76 ProGUI V1.44

56.6 SetPanelExUsercallback

SetPanelExUsercallback()
Syntax

Success = SetPanelExUsercallback(Panel.i, *UserCallback)

Description
Sets a PanelEx's usercallback.

Panel.i is the ID/Handle of the PanelEx and *UserCallback is the address of the new callback procedure.

Returns true for success or zero for failure.

PanelEx Index
5.6.7 GetPanelExUsercallback

SetPanelExUsercallback()

Syntax

*UserCallback = GetPanelExUsercallback(Panel.i)
Description

Gets a PanelEx's usercallback address.

Panel.i is the ID/Handle of the PanelEx.

Returns the *UserCallback procedure address or zero for failure / none set.

PanelEx Index
5.6.8 SetPanelExPageBackground

SetPanelExPageBackground()

Syntax

Success = SetPanelExPageBackground(Panel.i, Page.i, Background.i, *Backgroundimg, ImageX.I, ImageY.l,
ImageWidth.l, ImageHeight.l, Style.l, noRefresh.b)

Description

Sets the background or second owerlay background (use #PNLX_OVERLAY in Style.l) of a previously created PanelEx
page.

Panel.i is the ID/Handle of the PanelEx and Page.i is the Index/ID of the page that you want to set the background
for.

© 2025 Chris Deeney, Hash Design

Reference Manual 77

Background.i, *Backgroundimg, ImageX|, ImageY.l, ImageWidth.l, ImageHeight.l and Style.l can be #PNLX_| GNORE
in order to ignore the parameter and use the value already stored.

Background.i can be a gradient or a number from -1 to 11 which selects the style of the theme background for the
panel:

Background.l Theme
-1 No theme background.
Default tabbed background.
Blue slight vertical gradient.
Blue horizontal gradient.
Light blue solid.
Light blue horizontal gradient.
Light blue slight vertical gradient.
Dark blue slight vertical gradient.
Rebar background.
System push button normal background.
System push button hot background.
System push button pressed background.
System push button disabled background.

©CoOo~NOoOUThA~,WNPEO

ol
= O

Note the theme descriptions are based on WindowsXP Blue visual Style
and may vary in appearance depending on the user's theme settings.

*Backgroundimg points to the image data you want to display.
ImageX|, ImageY.l, ImageWidth.l and ImageHeight.| are the coordinates and dimensions of the image to be
displayed on the page. If ImageWidth.l or ImageHeight.| are zero then they default to the dimensions of the

PanelEx.

Style.l can be any of the following flags:

Flag Description

#PNLX_OVERLAY the second owerlay background is set instead of the page's default
background.

#PNLX_CENTRE centres the image horizontally on the page bypassing the ImageX| value.

#PNLX_VCENTRE centres the image vertically on the page bypassing the ImageY.| value.

#PNLX_RI GHT aligns the image from the right of the panel.

#PNLX_BOTTOM aligns the image from the bottom of the panel.

#PNLX_HREPEAT repeats the image along the horizontal axis bypassing the ImageX| value.

#PNLX_VREPEAT repeats the image along the vertical axis bypassing the ImageY.| value.

#PNLX_TI LE tiles the image ower the panel bypassing the ImageX| and ImageY .| values.

#PNLX_STRETCH stretches the image to fill the panel bypassing the ImageXlI, ImageY.l,

ImageWidth.l and ImageHeight.|l values. Use sparingly as this style is pretty
slow to render.

#PNLX_PERCENT positions the image as a percentage of the panel size, ImageX| and ImageY.l
must be <= 100.
#PNLX_HPERCENT positions the image horizontally as a percentage of the panel size, ImageX|

must be <= 100.

© 2025 Chris Deeney, Hash Design

78 ProGUI V1.44

#PNLX_VPERCENT positions the image horizontally as a percentage of the panel size, ImageX|
must be <= 100.
#PNLX_MASKED displays the image with colour white (#FFFFFF, RGB:255,255,255) as

transparent, useful for displaying JPEG files with transparency or other
formats that don't have an alpha channel.

#PNLX_NOCLI P when inside another PanelEX, this flag disables render clipping of the page's
contents to the size of this PanelEx bounding rectangle.

#PNLX_TRANSPARENT if the PanelEx is inside another control this flag will make the page's mouse
input "transparent”, meaning that the parent control receives all it's messages
even when the mouse is over the PanelEx.

If noRefresh.b is set to true then the PanelEx page won't be refreshed/updated after this command is called.
Returns true for success or zero for failure.

PanelEx Index

5.6.9 SetPanelExPageBorder
SetPanelExPageBorder()
Syntax

Success = SetPanelExPageBorder(Panel.i, Index.i, *Borderimage, *BorderMask, *BorderRect.RECT,
*BorderAutoStretch.RECT, noRefresh.b)

Description
Sets the border of a previously created PanelEx page.

The border is made from a single image containing all the border parts, supporting alpha transparency and optional
image mask.

Panel.i is the ID/Handle of the PanelEx and Index.i is the Index/Handle of the page that you want to set the border
for.

*Borderimage points to the image data that will be used as the border, for example: -

*BorderMask is optional and if null ProGUI will automatically generate a mask based on the *Borderimage. If
*BorderMask is -1 then no mask is used/created, *BorderMask can also be set to -2 in order for ProGUI to
automatically generate a mask and render the background of the page using just the mask without drawing the
border image. If finer control is needed *BorderMask can also point to monochrome image data that will be used as
the border's mask, for example: -

© 2025 Chris Deeney, Hash Design

Reference Manual 79

Any pixel that is white (#FFFFFF, RGB:255,255,255) will mask out the background of the PanelEx page where the
border overlaps and any pixel that is black (#000000, RGB:0,0,0) will be transparent.

*BorderRect.RECT can be null in order for ProGUI to automatically detect the border or can be a pointer to a RECT

structure (Rectangle) that describes what parts of the Borderimage.|l will be used as the border. ProGUI calculates
what parts are needed by subtracting *BorderRect.RECT from the Borderimage.| bounding rectangle, for example : -

*BorderAutoStretch.RECT is optional and can be null. If set then ProGUI will stretch the image for particular border
sides instead of repeating the image. *BorderAutoStretch should point to a RECT structure with each side of the
rectangle representing whether the 'auto stretch’ mode is turned on or not for that particular side of the border
(#True / #Fal se).

If noRefresh.b is set to true then the PanelEx page won't be refreshed/updated after this command is called.

Returns true for success or zero for failure.

PanelEx Index

5.6.10 SetPanelExPageAlpha
SetPanelExPageAlpha()
Syntax
Success = SetPanelExPageAlpha(Panel.i, Page.i, Alpha.c, noRefresh.b)

Description

Sets a PanelEx page's alpha transparency. Note currently only ProGUI components (except MenuEXx, ToolBarEx
and Rebar) inside the page will be effected.

Panel.i is the ID/Handle of the PanelEx and Page.i is the Index/ID of the page that you want to set the alpha
transparency for.

Alpha.c can be a number from 0 to 255, 0 = fully transparent and 255 = opaque.

If noRefresh.b is set to true then the PanelEx page won't be refreshed/updated after this command is called.

Returns true for success or zero for failure.

© 2025 Chris Deeney, Hash Design

80 ProGUI V1.44

PanelEx Index

5.6.11 SetPanelExPageScrolling

SetPanelExPageScrolling()

Syntax
Success = SetPanelExPageScrolling(Panel.i, Page.i, Flags.l, Value.l)

Description
Sets whether a PanelEx page's canvas is scrollable.
Panel.i is the ID/Handle of the PanelEx and Page.i is the Index/ID of the page that you want to set the scrolling for.
Currently the #PNLX_AUTOSCROLL flag is supported which means scrollbars at the bottom and/or right of the page will
appear when any control inside the page is positioned outside of the viewable area. Value.l can be true or false to
enable/disable the auto scroll feature.

The PanelEx is fully nestable and the scrollable area takes into account the border's mask if there is one.

Returns true for success or zero for failure.

PanelEx Index

5.6.12 GetPanelExPageScrolling

GetPanelExPageScrolling()
Syntax
Value = GetPanelExPageScrolling(Panel.i, Page.i, Flag.l)
Description
Returns the value of a PanelEx page's scrolling attribute.

Panel.i is the ID/Handle of the PanelEx and Page.i is the Index/ID of the page that you want to get the scrolling info
for.

Flag.l can be one of the following constants:

#PNLX_AUTOSCROLL Returns true if the auto-scroll feature is enabled for the page, false otherwise.
#PNLX_HSCROLL Returns true if the horizontal scrollbar is currently \isible, false otherwise.
#PNLX_VSCROLL Returns true if the vertical scrollbar is currently visible, false otherwise.

#PNLX_HSCROLLHANDLE Returns the handle (HWND) of the horizontal scrollbar or zero if it hasn't been
initialized.

#PNLX_VSCROLLHANDLE Returns the handle (HWND) of the vertical scrollbar or zero if it hasn't been
initialized.

© 2025 Chris Deeney, Hash Design

Reference Manual 81

#PNLX_AUTOSCROLL_NOHORI Returns true if display of the horizontal scrollbar is disabled in auto-scroll mode,
ZONTAL false otherwise.

#PNLX_AUTOSCROLL_NOVERTReturns true if display of the vertical scrollbar is disabled in auto-scroll mode, false
| CAL otherwise.

PanelEx Index

5.6.13 SetPanelExPageCursor
SetPanelExPageCursor()
Syntax
Success = SetPanelExPageCursor(Panel.i, Index.i, *Cursor)
Description
Sets the mouse cursor of a PanelEx page.

Panel.i is the ID/Handle of the PanelEx and Page.i is the Index/ID of the page that you want to set the background
for.

*Cursor is a pointer to the new cursor (HCURSOR) or can be a WindowsAPI system cursor constant, please see
http://msdn.microsoft.com/en-us/library/ms648391(VS.85).aspx for a list of the constants and their descriptions.

Returns the HCURSOR handle for success or zero for failure.

PanelEx Index

5.6.14 GetPanelExBitmap
GetPanelExBitmap()
Syntax
*bitmap = GetPanelExBitmap(Panel.i)

Description

Gets a PanelEx's image buffer.
Panel.i is the ID/Handle of the PanelEx.

Returns the address of the bitmap data or zero for failure.

PanelEx Index

GetPanelExBitmap()

Syntax

*bitmap = GetPanelExBitmap(Panel.i)

© 2025 Chris Deeney, Hash Design

82 ProGUI V1.44

Description

Gets a PanelEx's image buffer device context.
Panel.i is the ID/Handle of the PanelEx.

Returns the DC handle of the PanelEx or zero for failure.

PanelEx Index
5.6.16 RefreshPanelEx

RefreshPanelEx()

Syntax
Success = RefreshPanelEx(Panel.i)
Description
Refreshes/updates the currently displayed PanelEx page.

Panel.i is the ID/Handle of the PanelEx.

Returns true for success or zero for failure.

PanelEx Index

5.6.17 ShowPanelExPage
ShowPanelExPage()

Syntax
Success = ShowPanelExPage(Panel.i, Index.l)

Description
Displays the desired page specified by Index in the specified Panel. Index ranges numerically from 0 in ascending
order depending on how many pages have been created or can be a handle to a page.

Returns nonzero for success.

PanelEx Index

5.6.18 PanelExWidth

PanelExWidth()
Syntax
Width = PanelExWidth(Panel.i)

Description

© 2025 Chris Deeney, Hash Design

Reference Manual 83

Returns the width in pixels of a PanelEx. Panel.i is the handle/ID of the PanelEx.

PanelEx Index

5.6.19 PanelExHeight
PanelExHeight()
Syntax
Height = PanelExHeight(Panel.i)
Description

Returns the height in pixels of a PanelEx. Panel.i is the handle/ID of the PanelEx.

PanelEx Index
5.6.20 PanelExID

PanelEXID()
Syntax
WindowsID.i = PanelExID(Panel.i, Index.l)
Description
Returns the Windows handle (HWND) of the specified panel or page index.

If Index.| is less than zero then the Windows handle (HWND) of the PanelEXx is returned.

PanelEx Index
5.6.21 PanelExPagelndex

PanelExPagelndex()
Syntax
Index.| = PanelExPagelndex(Panel.i)
Description
Returns the index of the currently displayed page of a PanelEx (ID or handle) or if Panel.i is a handle to a page then

returns the index of that page.

PanelEx Index

5.6.22 FreePanelExPage
FreePanelExPage()

Syntax

© 2025 Chris Deeney, Hash Design

84 ProGUI V1.44

Success = FreePanelExPage(ID.i, Index.l)
Description
Frees and remowves a PanelEx page from memory.

ID.i is the ID or Handle of the PanelEx you wish to remove the page from. Index.l is the index of the page you wish to
remove and can be -1 in order to remowe all pages.

Returns true for success and zero for failure.

PanelEx Index

5.6.23 FreePanelEx

FreePanelEx()
Syntax
Success = FreePanelEx(ID.i)
Description
Frees a PanelEx from memory.
ID.i is the ID or Handle of the PanelEx you wish to remowve and can be -1 in order to remowve all PanelEx's.

Returns true for success and zero for failure.

PanelEx Index

© 2025 Chris Deeney, Hash Design

Reference Manual 85

5.7 ButtonEx
ProGUI - ButtonEx

o @ G

Overview

ButtonEx, ImageButtonEx, ToggleButtonEx, RadioButtonEx and CheckButtonEx are easy to use skinned and
borderless image button controls supporting 32bit alpha transparent images/icons, separate images for various
states (including: normal, hot/hover, pressed and disabled states) and tooltips.

Command Index

ButtonEx
ImageButtonEx
ToggleButtonEx
RadioButtonEx
CheckButtonEx
SetButtonExSkin
GetButtonExSkin
ButtonExToolTip
GetButtonExText
SetButtonExText
ChangeButtonEx
DisableButtonEx
GetButtonExState
SetButtonExState
ButtonEXID
FreeButtonEx

Skin States & Properties

Reference Manual - Index
57.1 ButtonEx

ButtonEx()
Syntax

WindowsID = ButtonEx (WindowID.i, ButtonID.I, XI, Y.lI, Width.l, Height.l, Text$, *NormallmagelD, *HotimagelD,
*PressedimagelD, *DisabledimagelD, Skin.i)

Description
Creates a skinned ButtonEx in the specified WindowID.i.

ButtonID.I specifies the internal ID of the ButtonEx and if #Pr oGUI _Any is used then the returned value will be the
new ButtonEx ID. XI, Y.I, Width.I and Height.| are the position and dimensions of the ButtonEx.

© 2025 Chris Deeney, Hash Design

86 ProGUI V1.44

Text$ is the text that will be displayed in the ButtonEx and can be an empty string.

*NormallmagelD, *HotimagelD, *PressedimagelD and *DisabledimagelD are pointers to the image data for the various
states.

Skin.i specifies what skin the ButtonEx will use and can be either a handle to a skin or if zero will render the
ButtonEx using the default system button skin. Please see Skin States & Properties for creating/editing ButtonEx
skins.

When the ButtonEx is clicked, a #\Wv_COMVAND message will be posted to WindowID's message queue containing
the ButtonID, which can be detected as a PureBasic #PB_Event _Menu event.

Returns the WindowsID (HWND) of the ButtonEx (or if #Pr oGUI _Any is used the ButtonEx ID) or zero for failure.

ButtonEx Index
5.7.2 ImageButtonEx

ImageButtonEx()
Syntax

WindowsID = ImageButtonEx(WindowlID.i, ButtonID.l, X1, Y.I, ImageWidth.l, ImageHeight.l, *NormallmagelD,
*HotimagelD, *PressedimagelD, *DisabledimagelD)

Description
Creates an ImageButtonEx in the specified WindowID.i.

ButtonID.I specifies the internal ID of the ImageButtonEx and if #Pr oGUI _Any is used then the returned value will be
the new ImageButtonEx ID. Xl, Y.I, ImageWidth.l and ImageHeight.| are the position and dimensions of the
ImageButtonEx. If ImageWidth.l or ImageHeight.l are null then the corresponding dimensions are calculated
automatically.

*NormallmagelD, *HotimagelD, *PressedimagelD and *DisabledimagelD are pointers to the image data for the various
states.

When the ImageButtonEX is clicked, a #\Wv_COMVAND message will be posted to WindowID's message queue
containing the ButtonID, which can be detected as a PureBasic #PB_Event _Menu event.

Returns the WindowsID (HWND) of the ImageButtonEx (or if #Pr oGUI _Any is used the ImageButtonEx ID) or zero for
failure.

ButtonEx Index
5.7.3 ToggleButtonEx

ToggleButtonEx()

Syntax

© 2025 Chris Deeney, Hash Design

Reference Manual 87

WindowsID = ToggleButtonEx(WindowlD.i, ToggleButtonID.I, X1, Y.I, Width.l, Height.l, Text$, *NormallmagelD,
*HotlmagelD, *PressedimagelD, *SelectedimagelD, *HotSelectedimagelD, PressedSelectedimagelD,
*DisabledimagelD, Skin.i)

Description
Creates a skinned toggle state ButtonEx in the specified WindowlD.i.

ToggleButtonID.| specifies the internal ID of the ToggleButtonEx and if #Pr oGUI _Any is used then the returned value
will be the new ToggleButtonEx ID. XI, Y.I, Width.| and Height.| are the position and dimensions of the
ToggleButtonEx.

Text$ is the text that will be displayed in the ToggleButtonEx and can be an empty string.

*NormallmagelD, *HotimagelD, *PressedimagelD and *DisabledimagelD are pointers to the image data for the various
unselected states.

*SelectedimagelD, *HotSelectedimagelD and *PressedSelectedimagelD are pointers to the image data for the
various selected states.

Skin.i specifies what skin the ToggleButtonEx will use and can be a handle to a skin or one of the following values:
zero will render the ToggleButtonEx using the default system button skin and #BUTTONEX_STI CKYSKI N will also
render using the system button skin except make the button stay pressed when selected. Please see Skin States &
Properties for creating/editing ToggleButtonEx skins.

When the ToggleButtonEx is clicked, a #\Wwv_COMMVAND message will be posted to WindowID's message queue
containing the ToggleButtonID, which can be detected as a PureBasic #PB_Event _Menu event.

The current "toggled" state can be retrieved or set using the GetButtonExState and SetButtonExState commands.

Returns the WindowsID (HWND) of the ToggleButtonEx (or if #Pr oGUI _Any is used the ToggleButtonEx ID) or zero
for failure.

ButtonEx Index

5.7.4 RadioButtonEx
RadioButtonEx()
Syntax
WindowsID = RadioButtonEx (WindowlID.i, ButtonID.I, X1, Y.l, Width.l, Height.I, Text$, Skin.i)
Description

Creates a skinned radio ButtonEx in the specified WindowID.i. All radio buttons that are created will be added to the
same group until RadioButtonEx is called with WindowlID.i as null, in which case a new group will be created and all
subsequent new radio buttons will be added to it.

ButtonID.| specifies the internal ID of the RadioButtonEx and if #Pr oGUI _Any is used then the returned value will be
the new RadioButtonEx ID. XI, Y.l, Width.l and Height.I are the position and dimensions of the RadioButtonEXx.

Text$ is the text that will be displayed in the RadioButtonEx and can be an empty string.

© 2025 Chris Deeney, Hash Design

88 ProGUI V1.44

Skin.i specifies what skin the RadioButtonEx will use and can be either a handle to a skin or if zero will render the
RadioButtonEx using the default system radio button skin. Please see Skin States & Properties for creating/editing
RadioButtonEx skins.

When the RadioButtonEx is clicked, a #\Wwv_COMMVAND message will be posted to WindowID's message queue
containing the ButtonID, which can be detected as a PureBasic #PB_Event _Menu event.

The currently selected state can be retrieved or set using the GetButtonExState and SetButtonExState commands.

Returns the WindowsID (HWND) of the RadioButtonEx (or if #Pr oGUI _Any is used the RadioButtonEx ID) or zero for
failure.

ButtonEx Index
5.75 CheckButtonEx

CheckButtonEx()
Syntax
WindowsID = CheckButtonEx(WindowlD.i, ButtonID.I, XI, Y.I, Width.I, Height.l, Text$, Skin.i)
Description
Creates a skinned check box ButtonEx in the specified WindowID.i.

ButtonID.I specifies the internal ID of the CheckButtonEx and if #Pr oGUI _Any is used then the returned value will be
the new CheckButtonEx ID. X1, Y.I, Width.| and Height.| are the position and dimensions of the CheckButtonEx.

Text$ is the text that will be displayed in the CheckButtonEx and can be an empty string.

Skin.i specifies what skin the CheckButtonEx will use and can be either a handle to a skin or if zero will render the
CheckButtonEx using the default system check box button skin. Please see Skin States & Properties for
creating/editing CheckButtonEx skins.

When the CheckButtonEx is clicked, a #\Wv_ COMVAND message will be posted to WindowlD's message queue
containing the ButtonID, which can be detected as a PureBasic #PB_Event _Menu event.

The current checked state can be retrieved or set using the GetButtonExState and SetButtonExState commands.

The check button can also be set to an "inbetween" state by specifying #BUTTONEX_| NBETWEEN using
SetButtonExState. The "inbetween" state is useful for representing multiple items that are not all of the same state
(i.e. on or off), for example the installable features of an application where some features are not "ticked" by default.
Clicking on the check button would then bring them from the "inbetween" state to be either all on or all off.

Returns the WindowsID (HWND) of the CheckButtonEx (or if #Pr oGUI _Any is used the CheckButtonEx ID) or zero for
failure.

ButtonEx Index

© 2025 Chris Deeney, Hash Design

Reference Manual 89

5.7.6 SetButtonExSkin
SetButtonExSkin()

Syntax
Success = SetButtonExSkin(ID.i, Skin.i, ComponentName$, noRefresh.b)

Description
Sets a ButtonEx's skin.
ID.i specifies the handle/ID of the button you want to set the skin for. Skin.i is the handle of the skin.
ComponentName$ is optional and can be an empty string. Specifying ComponentName$ will make the control use
the states and properties for that skin component name (if it exists in the skin) instead of the default (e.g.
"ButtonEx").
If noRefresh.b is set to true then the ButtonEx won't be refreshed/updated after this command is called.

Please see Skin States & Properties for creating/editing ButtonEx skins.

Returns true if successful, zero for failure.

ButtonEx Index

5.7.7 GetButtonExSkin
GetButtonExSkin()
Syntax
Skin.i = GetButtonExSkin(ID.i)
Description
Returns a handle to a ButtonEx's current skin or zero for failure.

ID.i specifies the handle/ID of the ButtonEx that you want to retrieve the skin for.

ButtonEx Index
5.7.8 ButtonExToolTip

ButtonExToolTip()
Syntax
Success = ButtonExToolTip(ID.i, Text.s)
Description

Associates a tooltip with a ButtonEx, ImageButtonEx, ToggleButtonEx, RadioButtonEx or CheckButtonEX.

© 2025 Chris Deeney, Hash Design

90 ProGUI V1.44

ID.i specifies the handle/ID of the button you want to associate the tooltip with. Text.s specifies the tooltip text you
want to display. ButtonExToolTip can be called again on an already defined tooltip in order to replace the associated

Text.s. Specifying Text.s as an empty string will remowve the tooltip.

Returns true if successful.

ButtonEx Index

579 GetButtonExText
GetButtonExText()

Syntax
Text$ = GetButtonEx Text(ID.i)

Description

Returns the text contained in a ButtonEx, ToggleButtonEx, RadioButtonEx or CheckButtonEx.

ID.i specifies the handle/ID of the button that you want to retrieve the text for.

ButtonEx Index

5.7.10 SetButtonExText

SetButtonExText()
Syntax
Success = SetButtonExText(ID.i, Text$)

Description

Sets the text of a ButtonEx, ToggleButtonEx, RadioButtonEx or CheckButtonEx.
ID.i specifies the handle/ID of the button you want to set the text for.

Returns true if successful, zero for failure.

ButtonEx Index

5.7.11 ChangeButtonEx
ChangeButtonEx()

Syntax

Success = ChangeButtonEx(ID.i, *NormallmagelD, *HotimagelD, *PressedimagelD, *SelectedimagelD,
*HotSelectedimagelD, *PressedSelectedimagelD, *DisabledimagelD)

Description

© 2025 Chris Deeney, Hash Design

Reference Manual 91

Changes the associated image/s of a ButtonEx, ToggleButtonEx or ImageButtonEx, also using this command with a
RadioButtonEx or CheckButtonEx will override the skin's default for that state image/icon.

ID.i specifies the handle/ID of the button you want to change the image/s for. *NormallmagelD, *HotimagelD,
*PressedimagelD, *SelectedimagelD, *HotSelectedimagelD, *PressedSelectedimagelD and *DisabledimagelD are
pointers to the new image data for the various states and can be null in order to keep the previously defined image
data for a particular state.

Returns true if successful.

ButtonEx Index

5.7.12 DisableButtonEx

DisableButtonEx()

Syntax
Success = DisableButtonEx(ID.i, Disable.b)
Description
Disables/enables a ButtonEx, ImageButtonEx, ToggleButtonEx, RadioButtonEx or CheckButtonEx.

ID.i specifies the handle/ID of the button you want to disable or enable. Specifying Disable.b as True will disable the
ImageButtonEx, or False will enable.

Returns true if successful.

ButtonEx Index

5.7.13 GetButtonExState

GetButtonExState()
Syntax
State = GetButtonExState(ID.i)
Description
Returns the selection state of a previously created ToggleButtonEx, RadioButtonEx or CheckButtonEx.
ID.i specifies the handle/ID of the button you want to retrieve the state for.

If the button is a ToggleButtonEx or RadioButtonEx and is currently toggled/selected then the state is returned as
true or false otherwise.

If the button is a CheckButtonEx and is currently "ticked" then the state is returned as true or false otherwise. If the
CheckButtonEXx is in the "inbetween" state then the state is returned as #BUTTONEX_| NBETWEEN.

© 2025 Chris Deeney, Hash Design

92 ProGUI V1.44

ButtonEx Index
5.7.14 SetButtonExState

SetButtonExState()
Syntax
Success = SetButtonEx State(ID.i, State.b)
Description
Sets the current selection state of a previously created ToggleButtonEx, RadioButtonEx or CheckButtonEXx.
ID.i specifies the handle/ID of the button you want to set the state for.

If the button is a ToggleButtonEx or RadioButtonEx and State is true then the button will be toggled/selected or if
false, un-toggled/de-selected.

If the button is a CheckButtonEx and State is true then the button will be ticked/checked or if State is false then the
button will be unchecked. If #BUTTONEX_| NBETWEEN is specified as State then the CheckButtonEx will be in the
"inbetween” state. The "inbetween" state is useful for representing multiple items that are not all of the same state
(i.e. on or off), for example the installable features of an application where some features are not "ticked" by default.
Clicking on the check button would then bring them from the "inbetween" state to be either all on or all off.

Returns true if successful, zero for failure.

ButtonEx Index
5.7.15 ButtonExID

ButtonEXxID()
Syntax
WindowsID = ButtonExID(ID.I)
Description

Returns the Windows ID (HWND) of a previously created ButtonEx, ImageButtonEx, ToggleButtonEx,
RadioButtonEx or CheckButtonEx.

ButtonEx Index
5.7.16 FreeButtonEx

FreeButtonEx()

Syntax

Success = FreeButtonEx(ID.i)

© 2025 Chris Deeney, Hash Design

Reference Manual 93

Description
Frees a ButtonEx, ImageButtonEx, ToggleButtonEx, RadioButtonEx or CheckButtonEx from memory.
ID.i is the ID/Windows Handle of the button you wish to free or -1 in order to free all buttons.

Returns true for success or zero for failure.

ButtonEx Index

5.7.17 Skin States & Properties

ButtonEx Skin States & Properties

Component Names
ButtonEx, ToggleButtonEx, RadioButtonEx, CheckButtonEx

State Names

Name Description
Normal Normal button state.
Hot Hower state when the mouse pointer is over the button.
Pressed When the button is pressed.
Disabled The button is disabled.

ToggleButtonEx, CheckButtonEx and RadioButtonEx Only States

selected Normal selected toggle/check/radio button state.

selected hot Selected hover state when the mouse pointer is over the toggle/check/radio button.

selected pressed When the toggle/check/radio button is in the selected state and pressed.
CheckButtonEx only States

inbetween Normal "inbetween" state of a check button.
inbetween hot Hower state when the mouse pointer is over the "inbetween" state check button.
inbetween pressed When the check button is in the "inbetween" state and pressed.

Properties

Name Description Valid Value/s separated by semi-colon (’;")

background image Displays a background Can be an image or icon file path/name.

image.
background Sets the position of the x: centre / repeat / <pixels> / <value>%
position background image. y: centre / repeat / <pixels> / <value>%

top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%
left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false

© 2025 Chris Deeney, Hash Design

94 ProGUI V1.44

background

border image

border mask

owerlay image

owerlay position

owerlay

Sets the background
colour, gradient or
theme.

Sets the border image.

Sets the border mask.

Sets the second
background overlay
image.

Sets the position of the
second owerlay
background image.

Sets the second owerlay
background colour,
gradient or theme.

tile: true / false
masked: true / false

Can be a colour, gradient or background theme constant (Please
see AddPanelExPage for a description of the possible values).

gradient: <start_colour>, <end_colour>

gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...

gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...

<colour>

<theme constant>

Can be an image or icon file path/name.

The following optional parameters manually specify the border
rectangle used to create the border:

top: <pixels>

bottom: <pixels>

left: <pixels>

right: <pixels>

Can be an image/icon file path/name or null to automatically
generate mask from border image or -1 to not use a mask or -2 to
automatically generate mask from border image but not render the
border.

The following optional parameters manually specify the border
rectangle used to create the border mask:

top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>

Can be an image or icon file path/name.

X: centre / repeat / <pixels> / <value>%

y: centre / repeat / <pixels> / <value>%

top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%
left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false

tile: true / false

masked: true / false

Can be a colour, gradient or background theme constant (Please
see AddPanelExPage for a description of the possible values).

gradient: <start_colour>, <end_colour>

© 2025 Chris Deeney, Hash Design

Reference Manual 95

image

image position

image padding

text

text position

text padding

cursor

Sets the image to use
as the button's icon.

Sets the position of the
button's image/icon.

Sets the padding size
around the button's
image.

Sets the button text font
and colour.

Sets the position of the
button text.

Sets the padding size
around the button's text.

Sets the mouse
pointer/cursor for the
button state.

gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...

gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...

<colour>

<theme constant>

Can be an image or icon file path/name.

noclip: true / false

X: centre / <pixels> / <value>%

y: centre / <pixels> / <value>%

top: centre / <pixels> / <value>%
bottom: centre / <pixels> / <value>%
left: centre / <pixels> / <value>%
right: centre / <pixels> / <value>%
top: <pixels>

bottom: <pixels>

left: <pixels>

right: <pixels>

font: <name>, <point-size>

font: <name>, <point-size>, italic / underline / bold /
strikethrough, .., ...

colour: <colour>

X: centre / <pixels> / <value>%
y: centre / <pixels> / <value>%
top: centre / <pixels> / <value>%
bottom: centre / <pixels> / <value>%
left: centre / <pixels> / <value>%
right: centre / <pixels> / <value>%
top: <pixels>

bottom: <pixels>

left: <pixels>

right: <pixels>

appstarting

arrow

Ccross

hand

help

ibeam

no

size

sizeall

Sizenesw

sizens

sizenwse

Sizewe

uparrow

wait

<HCURSOR>

© 2025 Chris Deeney, Hash Design

96

ProGUI V1.44

ButtonEx Index

© 2025 Chris Deeney, Hash Design

5.8

Reference Manual

SplitterEx

ProGUI - SplitterEx

97

© 2025 Chris Deeney, Hash Design

98

ProGUI V1.44

-

[m7 SplitterEx 1

Mame

J artwork

) bleground
, cabinets
) ofg

J cpanel

J ctrr

| diff

) docs

. fiyers

, folders

| icons
Jini

Jinp

| manquees
J memcard
| nvram

| roms

, samples

Nl T

T —— — — — ——— — — —— — — — — —

i

m

Editor Gadget 1

© 2025 Chris Deeney, Hash Design

Reference Manual 99

W7 SplitterEx 2 —
Mame Size Type Date Moc =
) artwark 2302/

J bleground 25/07/ A
, cabinets 2507/
| cfg 230274
J cpanel 29077
) ctrr 237027
| diff 29/07/

| docs 230274 -
F T b
—_— |
Editor Gadget 4

Overview

SplitterEx is a highly customizable skinned splitter control used for splitting up areas of your interface (which can be
resized by dragging the splitter bar). The SplitterEx has 2 default system skins and an Office 2007 default skin. The
SplitterEx also supports an "anchoring" feature which allows the user to 'single click' on the splitter bar, making it
collapse to the anchored position (clicking' again would expand the splitter bar to it's last position).

Command Index

SplitterEx
SetSplitterExSkin
GetSplitterExSkin
SetSplitterExAttribute
GetSplitterExAttribute
SplitterExID
FreeSplitterEx

Skin States & Properties

Reference Manual - Index

© 2025 Chris Deeney, Hash Design

100 ProGUI V1.44

5.8.1 SplitterEx

SplitterEx()
Syntax
WindowsID = SplitterEx (WindowlD.i, SplitterID.1, x.1, y.I, Width.I, Height.l, WindowIDL1.i, WindowID2.i, Skin.i,
Flags.i)
Description

Creates a skinned SplitterEx in the specified WindowID.i.

SplitterID.| specifies the internal ID of the SplitterEx and if #Pr oGUI _Any is used then the returned value will be the
new SplitterEx ID. x.I, y.I, Width.l and Height.l are the position and dimensions of the SplitterEx.

WindowlID1.i and WindowlD2.i are the WindowsID (HWND) of the first and second controls to be split inside the
SplitterEx.

Skin.i specifies what skin the SplitterEx will use and can be either a handle to a skin or one of the following default
skins/styles:

#SPLI TTEREX_DEFAULTSKI N Default system skin with no gripper box.
#SPLI TTEREX_DEFAULTSKI N2 Default system skin with separate gripper box.
#Ul STYLE_OFFI CE2007 Office 2007 style skin.

Please see the SplitterEx Skin States & Properties for creating/editing skins.
Flags.i can be #SPLI TTEREX_VERTI CAL in order to split vertically instead of horizontally.

The SplitterEx can also have the "anchoring” feature enabled. This allows the user to 'single click' on the splitter bar,
making it collapse to the anchored position (‘clicking' again would expand the splitter bar to it's last position). To
enable this feature you need to specify one of the following constants in Flags.i :

#SPLI TTEREX_ANCHOREDTOP The splitter bar is anchored to the top of the vertical SplitterEx.

#SPLI TTEREX_ANCHOREDLEFT The splitter bar is anchored to the left of the horizontal
SplitterEx.

#SPLI TTEREX_ANCHOREDBOTTOM The splitter bar is anchored to the bottom of the vertical
SplitterEx.

#SPLI TTEREX_ANCHOREDRI GHT The splitter bar is anchored to the right of the horizontal
SplitterEx.

To position the splitter bar in it's "anchored" state when the SplitterEx is first displayed then also specify
#SPLI TTEREX_ANCHOR in Flags.i as well.

The "un-anchored" expanded position can also be set using SetSplitterExAttribute with

#SPLI TTEREX_ANCHORSI ZETO.

Returns the WindowsID (HWND) of the SplitterEx (or if #Pr oGUI _Any is used the SplitterEx ID) or zero for failure.

© 2025 Chris Deeney, Hash Design

Reference Manual 101

SplitterEx Index
5.8.2 SetSplitterExSkin

SetSplitterExSkin()
Syntax
Success = SetSplitterExSkin(ID.i, Skin.i, ComponentName$, noRefresh.b)
Description
Sets a SplitterEx’s skin.
ID.i specifies the handle/ID of the splitter you want to set the skin for. Skin.i is the handle of the skin.

ComponentName$ is optional and can be an empty string. Specifying ComponentName$ will make the control use
the states and properties for that skin component name (if it exists in the skin) instead of the default "SplitterEx".

If noRefresh.b is set to true then the SplitterEx won't be refreshed/updated after this command is called.
Please see Skin States & Properties for creating/editing SplitterEx skins.

Returns true if successful, zero for failure.

SplitterEx Index
5.8.3 GetSplitterExSkin

GetSplitterExSkin()
Syntax
Skin.i = GetSplitterExSkin(ID.i)
Description
Returns a handle to a SplitterEx's current skin or zero for failure.

ID.i specifies the handle/ID of the SplitterEx that you want to retrieve the skin for.

SplitterEx Index
5.8.4 SetSplitterExAttribute

SetSplitterExAttribute()
Syntax
Success = SetSplitterExAttribute(ID.i, Attribute.i, Value.i)
Description

Sets a SplitterEx's attribute.

© 2025 Chris Deeney, Hash Design

102 ProGUI V1.44

ID.i specifies the handle/ID of the splitter you want to set the attribute for.

Please see the following table for descriptions of the available attributes and values:

Constant

#SPLI TTEREX_FI RST

#SPLI TTEREX_SECOND

#SPLI TTEREX_FI RSTM NI MUMSI ZE

#SPLI TTEREX_FI RSTMAXI MUMSI ZE

#SPLI TTEREX_SECONDM NI MUMSI ZE

#SPLI TTEREX_SECONDVAXI MUMSI ZE

#SPLI TTEREX_HI DEFI RST

#SPLI TTEREX_HI DESECOND

#SPLI TTEREX_POSI TI ON

#SPLI TTEREX_VERTI CAL

#SPLI TTEREX_ANCHORPOSI TI ON

#SPLI TTEREX_ANCHORSI ZETO

Description

Sets the first control of the SplitterEx.

Sets the second control of the
SplitterEx.

Sets the minimum size that the first
control of the SplitterEx is allowed to
be resized to.

Sets the maximum size that the first
control of the SplitterEx is allowed to
be resized to.

Sets the minimum size that the
second control of the SplitterEx is
allowed to be resized to.

Sets the maximum size that the
second control of the SplitterEx is
allowed to be resized to.

Hides or shows the first control in the
SplitterEx.

Hides or shows the second control in
the SplitterEx.

Sets the position of the SplitterEx
splitter bar.

Sets whether the SplitterEx is vertical
or horizontal.

Sets at what side the splitter bar is
anchored or if disabled.

Sets the position in pixels of where
the splitter bar will be expanded to
from the "anchored" state.

Returns true if successful, zero for failure.

5.8.5 GetSplitterExAttribute

Syntax

SplitterEx Index

GetSplitterExAttribute()

Value

WindowsID (HWND) of the new
control.

WindowsID (HWND) of the new
control.

Value in pixels.

Value in pixels.

value in pixels.

Value in pixels.

True / False.

True / False.

Value in pixels.

True / False.

#SPLI TTEREX_ANCHOREDTOP
#SPLI TTEREX_ANCHOREDLEFT
#SPLI TTEREX_ANCHOREDBOTTOM
#SPLI TTEREX_ANCHOREDRI GHT

zero disables the "anchoring" feature.
Value in pixels.

© 2025 Chris Deeney, Hash Design

Reference Manual 103

Value.i = GetSplitterExAttribute(ID.i, Attribute.i)

Description

Returns a SplitterEx's attribute value or -1 for failure.

ID.i specifies the handle/ID of the splitter you want to get the attribute value for.

Please see the following table for descriptions of the available attributes and return values:

Constant

#SPLI TTEREX_FI RST

#SPLI TTEREX_SECOND

#SPLI TTEREX_FI RSTM NI MUMSI ZE

#SPLI TTEREX_FI RSTMAXI MUMSI ZE

#SPLI TTEREX_SECONDM NI MUMSI ZE

#SPLI TTEREX_SECONDVAXI MUMSI ZE

#SPLI TTEREX_HI DEFI RST

#SPLI TTEREX_HI DESECOND

#SPLI TTEREX_POSI Tl ON

#SPLI TTEREX_VERTI CAL

#SPLI TTEREX_ANCHORPQOSI TI ON

#SPLI TTEREX_ANCHORSI ZETO

Description

Gets the first control of the
SplitterEx.

Gets the second control of the
SplitterEx.

Gets the minimum size that the first
control of the SplitterEx is allowed to
be resized to.

Gets the maximum size that the first
control of the SplitterEx is allowed to
be resized to.

Gets the minimum size that the
second control of the SplitterEx is
allowed to be resized to.

Gets the maximum size that the
second control of the SplitterEx is
allowed to be resized to.

Returns whether the first control in
the SplitterEx is hidden or not.

Returns whether the second control
in the SplitterEx is hidden or not.

Gets the position of the SplitterEx
splitter bar.

Returns whether the SplitterEx is
vertical or horizontal.

Returns at what side the splitter bar
is anchored or if disabled.

Returns the position in pixels of
where the splitter bar will be
expanded to from the "anchored"
state.

SplitterEx Index

Return Value

WindowsID (HWND) of the control.

WindowsID (HWND) of the control.

Value in pixels.

Value in pixels.

value in pixels.

Value in pixels.

True / False.

True / False.

Value in pixels.

True / False.

#SPLI TTEREX_ANCHOREDTOP
#SPLI TTEREX_ANCHOREDLEFT
#SPLI TTEREX_ANCHOREDBOTTOM
#SPLI TTEREX_ANCHOREDRI GHT

zero, the "anchoring" feature is
disabled.

Value in pixels.

© 2025 Chris Deeney, Hash Design

104 ProGUI V1.44

5.8.6 SplitterExID

Syntax

SplitterExID()

WindowsID.I = SplitterExID(ID.I)

Description

Returns the Windows ID (HWND) of a previously created SplitterEx.

SplitterEx Index

5.8.7 FreeSplitterEx

Syntax

FreeSplitterEx()

Success = FreeSplitterEx(ID.i)

Description

Frees a previously created SplitterEx from memory.

ID.i is the ID/Windows Handle of the SplitterEx you wish to free or -1 in order to free all SplitterExs.

Returns true for success or zero for failure.

SplitterEx Index

5.8.8 Skin States & Properties

Component Name
SplitterEx

State Names

Name

Normal
Hot

Pressed
Normal Vertical
Hot Vertical

SplitterEx Skin States & Properties

Description

Horizontal SplitterEx normal state.

Horizontal SplitterEx hover state when the mouse pointer
is over the gripper.

Horizontal SplitterEx, when the gripper is pressed.
Vertical SplitterEx normal state.

Vertical SplitterEx hower state when the mouse pointer is
over the gripper.

© 2025 Chris Deeney, Hash Design

Reference Manual 105

Pressed Vertical Vertical SplitterEx, when the gripper is pressed.

Properties
Name Description Valid Value/s separated by semi-colon (';")

gripper size Sets the size of the width: <pixels>
SplitterEx gripper. If height: <pixels>
Width or Height are zero
then the gripper size fills
that dimension.

first padding Sets the padding around top: <pixels>
the first control of the left: <pixels>
SplitterEx. bottom: <pixels>

right: <pixels>
second padding Sets the padding around top: <pixels>
the second control of the left: <pixels>
SplitterEx. bottom: <pixels>
right: <pixels>
background image Displays a background Can be an image or icon file path/name.
image.

background Sets the position of the x: centre / repeat / <pixels> / <value>%
position background image. y: centre / repeat / <pixels> / <value>%
top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%
left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false
tile: true / false
masked: true / false

background Sets the background Can be a colour, gradient or background theme constant (Please
colour, gradient or see AddPanelExPage for a description of the possible values).
theme.
gradient: <start_colour>, <end_colour>
gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...
<colour>
<theme constant>

border image Sets the border image. Can be an image or icon file path/name.

The following optional parameters manually specify the border
rectangle used to create the border:

top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>

© 2025 Chris Deeney, Hash Design

106

ProGUI V1.44

border mask

owerlay image

owerlay position

overlay

gripper background
image

gripper background
position

gripper background

Sets the border mask.

Sets the second
background overlay
image.

Sets the position of the
second owerlay
background image.

Sets the second owerlay
background colour,
gradient or theme.

Displays a background
image

Sets the position of the
background image.

Sets the background
colour, gradient or
theme.

Can be an image/icon file path/name or null to automatically
generate mask from border image or -1 to not use a mask or -2 to
automatically generate mask from border image but not render the
border.

The following optional parameters manually specify the border
rectangle used to create the border mask:

top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>

Can be an image or icon file path/name.

X: centre / repeat / <pixels> / <value>%

y: centre / repeat / <pixels> / <value>%

top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%
left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false

tile: true / false

masked: true / false

Can be a colour, gradient or background theme constant (Please
see AddPanelExPage for a description of the possible values).

gradient: <start_colour>, <end_colour>

gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...

gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...

<colour>

<theme constant>

Can be an image or icon file path/name.

X: centre / repeat / <pixels> / <value>%

y: centre / repeat / <pixels> / <value>%

top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%
left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false

tile: true / false

masked: true / false

Can be a colour, gradient or background theme constant (Please
see AddPanelExPage for a description of the possible values).

gradient: <start_colour>, <end_colour>

© 2025 Chris Deeney, Hash Design

Reference Manual 107

gripper border Sets the border image.

image

gripper border Sets the border mask.

mask

gripper overlay Sets the second

image background overlay
image.

gripper overlay Sets the position of the

position second owverlay

background image.

gripper overlay Sets the second owerlay
background colour,
gradient or theme.

gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...

gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...

<colour>

<theme constant>

Can be an image or icon file path/name.

The following optional parameters manually specify the border
rectangle used to create the border:

top: <pixels>

bottom: <pixels>

left: <pixels>

right: <pixels>

Can be an image/icon file path/name or null to automatically
generate mask from border image or -1 to not use a mask or -2 to
automatically generate mask from border image but not render the
border.

The following optional parameters manually specify the border
rectangle used to create the border mask:

top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>

Can be an image or icon file path/name.

X: centre / repeat / <pixels> / <value>%

y: centre / repeat / <pixels> / <value>%

top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%
left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false

tile: true / false

masked: true / false

Can be a colour, gradient or background theme constant (Please
see AddPanelExPage for a description of the possible values).

gradient: <start_colour>, <end_colour>

gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...

gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...

<colour>

<theme constant>

© 2025 Chris Deeney, Hash Design

108

ProGUI V1.44

SplitterEx Index

© 2025 Chris Deeney, Hash Design

5.9

Reference Manual

ExplorerBar

ProGUI - ExplorerBar

109

© 2025 Chris Deeney, Hash Design

110 ProGUI V1.44

@ Wiew system information
Tﬁ Add or remove programs
9 Change a setting

g My Metwork Places

My Docurments
I Shared Documents

9- Control Panel

Details

Example Item 1
Example Itern 2

System Tasks

@ View system information
B Add or remove programs
ﬂ Change a setting

Other Places

& My Network Places
) My Documents
Shared Documents
3 control Panel

A

System Tasks

@ View system information
Eﬁ Add or remove programs

9 Change a setting

Other Places

g My Metwork Places
My Documents
I3 Shared Documents
9 Control Panel

Details

Example Item 1
Example Item 2

b3

b3

g

© 2025 Chris Deeney, Hash Design

Reference Manual 111

System Tasks

»

View system information
;j Add or remove programs

G' Change a setting

Other Places

b3

&J My Network Places
u:'| My Documents
I3y Shared Documents
G' Control Panel

Details

g

Example Item 1

Example Item 2

Overview

The ExplorerBar is a highly customizable skinned navigation/menu control used for displaying a list of categorized
options/items by group which can be collapsed or un-collapsed (supporting smooth sliding animation with alpha fade
transparency). The ExplorerBar has a default system skin and an Office 2007 default skin.

Command Index

CreateExplorerBar
AddExplorerBarGroup
AddExplorerBarimageGroup
ExplorerBarltem
ExplorerBarlmageltem
SetExplorerBarGroupState
GetExplorerBarGroupState
SetExplorerBarSkin
GetExplorerBarSkin
ExplorerBarlD
FreeExplorerBar

© 2025 Chris Deeney, Hash Design

112 ProGUI V1.44

Skin States & Properties

Reference Manual - Index

5.9.1 CreateExplorerBar
CreateExplorerBar()

Syntax

WindowsID = CreateExplorerBar(WindowlD.i, ExplorerBarID.I, x.I, y.I, Width.I, Height.l, Skin.i)
Description

Creates an empty skinned ExplorerBar in the specified WindowID.i.

ExplorerBarlD.| specifies the internal ID of the ExplorerBar and if #Pr oGUI _Any is used then the returned value will be
the new ExplorerBar ID. x.1, y.l, Width.l and Height.| are the position and dimensions of the ExplorerBar.

Skin.i specifies what skin the ExplorerBar will use and can be either a handle to a skin or if zero will render the
ExplorerBar using the default system skin or can be #Ul STYLE_OFFI CE2007 to use the default Office 2007 skin.
Please see Skin States & Properties for creating/editing ExplorerBar skins.

Returns the WindowsID (HWND) of the ExplorerBar (or if #Pr oGUI _Any is used the ExplorerBar ID) or zero for failure.

See AddExplorerBarGroup, AddExplorerBarimageGroup.

ExplorerBar Index

5.9.2 AddExplorerBarGroup

AddExplorerBarGroup()

Syntax

WindowsID = AddExplorerBarGroup(Title$, isCollapsed.b)

Description
Adds an empty Group to the current previously created ExplorerBar.

Title$ is the text that will be displayed as the ExplorerBar Group's title/header. Specifying isCollapsed.b as true will
initially create and display the Group in it's collapsed state instead of the default un-collapsed.
Returns the WindowsID (HWND) of the ExplorerBar Group header or zero for failure.

See ExplorerBarltem, ExplorerBarlmageltem.

ExplorerBar Index

© 2025 Chris Deeney, Hash Design

Reference Manual 113

5.9.3 AddExplorerBarimageGroup
AddExplorerBarlmageGroup()
Syntax

WindowsID = AddExplorerBarimageGroup(Title$, *NormallmagelD, *HotimagelD, *PressedimagelD,
*SelectedlmagelD, *HotSelectedimagelD, PressedSelectedimagelD, *DisabledimagelD, isCollapsed.b)

Description
Adds an empty Group with header icon/image to the current previously created ExplorerBar.
Title$ is the text that will be displayed as the ExplorerBar Group's title/header.

*NormallmagelD, *HotimagelD, *PressedimagelD and *DisabledimagelD are pointers to the image data for the various
Group un-collapsed states.

*SelectedimagelD, *HotSelectedimagelD and *PressedSelectedimagelD are pointers to the image data for the
various Group collapsed states.

Specifying isCollapsed.b as true will initially create and display the Group in it's collapsed state instead of the default

un-collapsed.

Returns the WindowsID (HWND) of the ExplorerBar Group header or zero for failure.

See ExplorerBarltem, ExplorerBarlmageltem.

ExplorerBar Index
5.9.4 ExplorerBarltem

ExplorerBarltem()
Syntax
WindowsID = ExplorerBarltem (temiD.l, Text$)
Description
Adds a new item to the current previously created ExplorerBar group.

ItemID.| specifies the internal ID of the group item and if #Pr oGUI _Any is used then the returned value will be the new
item ID. Text$ is the text that will be displayed as the group item's title/label.

When the item is clicked, a #\Wv_COMVAND message will be posted to the ExplorerBar's parent window message

queue containing the ItemID, which can be detected as a PureBasic #PB_Event _Menu event.

Returns the WindowsID (HWND) of the ExplorerBar group item (or if #Pr oGUI _Any is used the item ID) or zero for
failure.

© 2025 Chris Deeney, Hash Design

114 ProGUI V1.44

ExplorerBar Index
5.9.5 ExplorerBarimageltem

ExplorerBarimageltem()

Syntax
WindowsID = ExplorerBarlmageltem(ltemlID.l, Text$, *NormallmagelD, *HotimagelD, *PressedlimagelD,
*DisabledimagelD)

Description

Adds a new item with icon/image to the current previously created ExplorerBar group.

ItemID.| specifies the internal ID of the group item and if #Pr oGUI _Any is used then the returned value will be the new
item ID. Text$ is the text that will be displayed as the group item's title/label.

*NormallmagelD, *HotimagelD, *PressedimagelD and *DisabledimagelD are pointers to the image data for the various
states.

When the item is clicked, a #\Wv_COMVAND message will be posted to the ExplorerBar's parent window message
gqueue containing the ItemID, which can be detected as a PureBasic #PB_Event _Menu event.

Returns the WindowsID (HWND) of the ExplorerBar group item (or if #Pr oGUI _Any is used the item ID) or zero for
failure.

ExplorerBar Index

5.9.6 SetExplorerBarGroupState
SetExplorerBarGroupState()
Syntax
Success = SetExplorerBarGroupState(ID.i, Index.i, Collapse.b)
Description
Sets the ExplorerBar Group's collapsed state making it animate into either the collapsed or un-collapsed state.

ID.i is the ID/Windows Handle of the ExplorerBar. Index.i is the zero based index of the desired Group. Collapse.b
can be either true to collapse or false to un-collapse.

Returns true for success or zero for failure.

See GetExplorerBarGroupState, AddExplorerBarGroup, AddExplorerBarimageGroup.

ExplorerBar Index

© 2025 Chris Deeney, Hash Design

Reference Manual 115

5.9.7 GetExplorerBarGroupState
GetExplorerBarGroupState()
Syntax
State = GetExplorerBarGroupState(ID.i, Index.i)
Description
Returns the collapsed state of the specified ExplorerBar Group.
ID.i is the ID/Windows Handle of the ExplorerBar. Index.i is the zero based index of the desired Group.

Returns true if the specified ExplorerBar Group is collapsed, false otherwise.

See SetExplorerBarGroupState, AddExplorerBarGroup, AddExplorerBarimageGroup.

ExplorerBar Index
5.9.8 SetExplorerBarSkin

SetExplorerBarSkin()
Syntax
Success = SetExplorerBarSkin(ID.i, Skin.i, ComponentName$, noRefresh.b)
Description
Sets an ExplorerBar's skin.
ID.i specifies the handle/ID of the ExplorerBar you want to set the skin for. Skin.i is the handle of the skin.

ComponentName$ is optional and can be an empty string. Specifying ComponentName$ will make the control use
the states and properties for that skin component name (if it exists in the skin) instead of the default "ExplorerBar".

If noRefresh.b is set to true then the ExplorerBar won't be refreshed/updated after this command is called.
Please see Skin States & Properties for creating/editing ExplorerBar skins.

Returns true if successful, zero for failure.

ExplorerBar Index
59.9 GetExplorerBarSkin

GetExplorerBarSkin()
Syntax
Skin.i = GetExplorerBarSkin(ID.i)

Description

© 2025 Chris Deeney, Hash Design

116 ProGUI V1.44

Returns a handle to an ExplorerBar's current skin or zero for failure.

ID.i specifies the handle/ID of the ExplorerBar that you want to retrieve the skin for.

ExplorerBar Index

5.9.10 ExplorerBarlD

ExplorerBarID()
Syntax
WindowsID.I = ExplorerBarID(ID.I)
Description

Returns the Windows ID (HWND) of a previously created ExplorerBar.

ExplorerBar Index

5.9.11 FreeExplorerBar
FreeExplorerBar()
Syntax
Success = FreeExplorerBar(ID.i)
Description
Frees an ExplorerBar from memory.
ID.i is the ID/Windows Handle of the ExplorerBar you wish to free or -1 in order to free all ExplorerBars.

Returns true for success or zero for failure.

ExplorerBar Index

5.9.12 Skin States & Properties
ExplorerBar Skin States & Properties

Component Name
ExplorerBar

State Name

Name Description

© 2025 Chris Deeney, Hash Design

Reference Manual 117

Normal

Properties

Name

margin

group padding

group margin

item padding

header height

item height

background image

background
position

background

border image

General properties for the whole ExplorerBar.

Description

Margin padding space
inside the ExplorerBar.

Padding space around
each group.

Margin padding space
inside each group.

Padding space around
each group item.

Height of each group
header.

Height of each group
item.

Displays a background
image.

Sets the position of the
background image.

Sets the background
colour, gradient or
theme.

Sets the border image.

Valid Value/s separated by semi-colon (';")

top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>
top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>
top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>
top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>
<pixels>

<pixels>

Can be an image or icon file path/name.

X: centre / repeat / <pixels> / <value>%

y: centre / repeat / <pixels> / <value>%

top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%
left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false

tile: true / false

masked: true / false

Can be a colour, gradient or background theme constant (Please
see AddPanelExPage for a description of the possible values).

gradient: <start_colour>, <end_colour>

gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...

gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...

<colour>

<theme constant>

Can be an image or icon file path/name.

© 2025 Chris Deeney, Hash Design

118 ProGUI V1.44

border mask

owerlay image

overlay position

owerlay

group background
image

group background
position

Sets the border mask.

Sets the second
background overlay
image.

Sets the position of the
second owerlay
background image.

Sets the second owerlay
background colour,
gradient or theme.

Displays a background
image.

Sets the position of the
background image.

The following optional parameters manually specify the border
rectangle used to create the border:

top: <pixels>

bottom: <pixels>

left: <pixels>

right: <pixels>

Can be an image/icon file path/name or null to automatically
generate mask from border image or -1 to not use a mask or -2 to
automatically generate mask from border image but not render the
border.

The following optional parameters manually specify the border
rectangle used to create the border mask:

top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>

Can be an image or icon file path/name.

X: centre / repeat / <pixels> / <value>%

y: centre / repeat / <pixels> / <value>%

top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%
left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false

tile: true / false

masked: true / false

Can be a colour, gradient or background theme constant (Please
see AddPanelExPage for a description of the possible values).

gradient: <start_colour>, <end_colour>

gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...

gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...

<colour>

<theme constant>

Can be an image or icon file path/name.

X: centre / repeat / <pixels> / <value>%

y: centre / repeat / <pixels> / <value>%

top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%

© 2025 Chris Deeney, Hash Design

Reference Manual 119

group background Sets the background
colour, gradient or
theme.

group border image Sets the border image.

group border mask Sets the border mask.

group overlay Sets the second

image background overlay
image.

group overlay Sets the position of the

position second owerlay

background image.

left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false

tile: true / false

masked: true / false

Can be a colour, gradient or background theme constant (Please
see AddPanelExPage for a description of the possible values).

gradient: <start_colour>, <end_colour>

gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...

gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...

<colour>

<theme constant>

Can be an image or icon file path/name.

The following optional parameters manually specify the border
rectangle used to create the border:

top: <pixels>

bottom: <pixels>

left: <pixels>

right: <pixels>

Can be an image/icon file path/name or null to automatically
generate mask from border image or -1 to not use a mask or -2 to
automatically generate mask from border image but not render the
border.

The following optional parameters manually specify the border
rectangle used to create the border mask:

top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>

Can be an image or icon file path/name.

X: centre / repeat / <pixels> / <value>%

y: centre / repeat / <pixels> / <value>%

top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%
left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false

tile: true / false

masked: true / false

© 2025 Chris Deeney, Hash Design

120 ProGUI V1.44

group overlay Sets the second owerlay Can be a colour, gradient or background theme constant (Please

background colour,
gradient or theme.

Component Names

see AddPanelExPage for a description of the possible values).

gradient: <start_colour>, <end_colour>

gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...

gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...

<colour>

<theme constant>

ExplorerBar Group Header, ExplorerBar Group Item

State Names

Name Description
Normal Normal header/item state.
Hot Hower state when the mouse pointer is over the header/item.
Pressed When the header/item is pressed.
Disabled The header/item is disabled.

ExplorerBar Group Header Only States

selected Normal collapsed state.
selected hot Collapsed hover state when the mouse pointer is over the header.

selected pressed When the header is in the collapsed state and pressed.

Properties

Name Description

background image Displays a background

image.
background Sets the position of the
position background image.
background Sets the background
colour, gradient or
theme.

Valid Value/s separated by semi-colon (';")

Can be an image or icon file path/name.

X: centre / repeat / <pixels> / <value>%

y: centre / repeat / <pixels> / <value>%

top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%
left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false

tile: true / false

masked: true / false

Can be a colour, gradient or background theme constant (Please
see AddPanelExPage for a description of the possible values).

gradient: <start_colour>, <end_colour>

© 2025 Chris Deeney, Hash Design

Reference Manual 121

border image Sets the border image.

border mask Sets the border mask.

owverlay image Sets the second
background overlay
image.

owerlay position Sets the position of the

second owverlay
background image.

owerlay Sets the second owerlay
background colour,
gradient or theme.

gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...

gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...

<colour>

<theme constant>

Can be an image or icon file path/name.

The following optional parameters manually specify the border
rectangle used to create the border:

top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>

Can be an image/icon file path/name or null to automatically
generate mask from border image or -1 to not use a mask or -2 to
automatically generate mask from border image but not render the
border.

The following optional parameters manually specify the border
rectangle used to create the border mask:

top: <pixels>
bottom: <pixels>
left: <pixels>
right: <pixels>

Can be an image or icon file path/name.

X: centre / repeat / <pixels> / <value>%

y: centre / repeat / <pixels> / <value>%

top: centre / repeat / <pixels> / <value>%
bottom: centre / repeat / <pixels> / <value>%
left: centre / repeat / <pixels> / <value>%
right: centre / repeat / <pixels> / <value>%
stretch: true / false

tile: true / false

masked: true / false

Can be a colour, gradient or background theme constant (Please
see AddPanelExPage for a description of the possible values).

gradient: <start_colour>, <end_colour>

gradient: <start_colour>, <end_colour>, <pos.f>, <colour>, <pos.f>,
<colour>, ...

gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>
gradient: vertical / rectangle / ellipse, <start_colour>, <end_colour>,
<pos.f>, <colour>, <pos.f>, <colour>, ...

<colour>

<theme constant>

© 2025 Chris Deeney, Hash Design

122 ProGUI V1.44

image Sets the image touse Can be an image or icon file path/name.
as the header/item icon.
noclip: true / false

image position Sets the position of the x: centre / <pixels> / <value>%
imagel/icon. y: centre / <pixels> / <value>%
top: centre / <pixels> / <value>%
bottom: centre / <pixels> / <value>%
left: centre / <pixels> / <value>%
right: centre / <pixels> / <value>%

image padding Sets the padding size top: <pixels>
around the header/item bottom: <pixels>
image. left: <pixels>
right: <pixels>
text Sets the text font and font: <name>, <point-size>
colour. font: <name>, <point-size>, italic / underline / bold /
strikethrough, .., ...
colour: <colour>
text position Sets the position of the x: centre / <pixels> / <value>%
text. y: centre / <pixels> / <value>%

top: centre / <pixels> / <value>%
bottom: centre / <pixels> / <value>%
left: centre / <pixels> / <value>%
right: centre / <pixels> / <value>%

text padding Sets the padding size top: <pixels>
around the text. bottom: <pixels>
left: <pixels>
right: <pixels>
cursor Sets the mouse appstarting
pointer/cursor for the arrow
state. cross
hand
help
ibeam
no
size
sizeall
sizenesw
sizens
sizenwse
sizewe
uparrow
wait
<HCURSOR>

ExplorerBar Index

© 2025 Chris Deeney, Hash Design

Reference Manual 123

5.10 Colours & Images

ProGUI - Colours & Images

Overview
Various commands for setting/retrieving rendering style colours/gradients and image manipulation and effects.

Command Index

SetUIColourMode
GetUIColourMode
GetCurrentColourScheme
GetUIColour
SetUIColour
MakeColour

MakeRGB
AlphaBlendColour
CreateGradient
SetGradient
SetGradientColour
GetGradientColour
RemowveGradientColour
FreeGradient

Loadimg

ImgWidth

ImgHeight

ImgBlend
ImgHueBlend

Freelmg

Reference Manual - Index

5.10.1 SetUIColourMode

SetUIColourMode()

Syntax
Success = SetUIColourMode(Mode.l)

Description

Changes the current colour scheme rendering mode for styled components such as MenuEx, ToolbarEx and Rebars.
This command also automatically updates all skinned controls to the equivalent colour theme name if supported (see
UpdateSkins).

Mode can be any of the following constants: -

#Ul COLOURMODE_DEFAULT Automatically selects "best match" colour scheme based on user's Windows
theme colour.
#Ul COLOURMODE_DEFAULT_BLUE Renders the User Interface using the default "blue" colour scheme.

#Ul COLOURMODE_DEFAULT_OLI VE Renders the User Interface using the default "olive" colour scheme.

© 2025 Chris Deeney, Hash Design

124 ProGUI V1.44

#Ul COLOURMODE_DEFAULT_SI LVER
#Ul COLOURMODE_DEFAULT_GREY
#Ul COLOURMODE_CUSTOM

#Ul COL OURMODE_CUSTOM _BLUE

#Ul COLOURMODE_CUSTOM _OLI VE

#Ul COLOURMODE_CUSTOM_SI LVER

#Ul COLOURMODE_CUSTOM_GREY

Returns true if successful.

Renders the User Interface using the default "silver" colour scheme.
Renders the User Interface using the default classic "grey" colour scheme.

Automatically selects "best match" custom colour scheme based on user's
Windows theme colour.
Renders the User Interface using the custom "blue" colour scheme.

Renders the User Interface using the custom "olive" colour scheme.
Renders the User Interface using the custom "silver" colour scheme.

Renders the User Interface using the custom classic "grey" colour scheme.

Colours & Images Index

5.10.2 GetUIColourMode

Syntax

GetUIColourMode()

UlColourMode = GetUIColourMode()

Description

Returns the current colour scheme rendering mode for styled components such as MenuEx, ToolbarEx and Rebars.
The returned value can be any of the following constants: -

#Ul COLOURMODE_DEFAULT

#Ul COL OURMODE_DEFAULT_BLUE
#Ul COLOURMODE_DEFAULT_OLI VE
#Ul COLOURMODE_DEFAULT_SI LVER
#Ul COLOURMODE_DEFAULT_GREY

#Ul COL OURMODE_CUSTOM

#Ul COLOURMODE_CUSTOM _BLUE
#Ul COLOURMODE_CUSTOM _OLI VE
#UI COLOURMODE_CUSTOM _SI LVER

#Ul COLOURMODE_CUSTOM_GREY

Automatically selects "best match" colour scheme based on user's Windows
theme colour.
Renders the User Interface using the default blue colour scheme.

Renders the User Interface using the default olive colour scheme.
Renders the User Interface using the default silver colour scheme.
Renders the User Interface using the default classic grey colour scheme.

Automatically selects "best match" custom colour scheme based on user's
Windows theme colour.
Renders the User Interface using the custom blue colour scheme.

Renders the User Interface using the custom olive colour scheme.
Renders the User Interface using the custom silver colour scheme.

Renders the User Interface using the custom classic grey colour scheme.

Colours & Images Index

© 2025 Chris Deeney, Hash Design

Reference Manual 125

5.10.3 GetCurrentColourScheme

GetCurrentColourScheme()
Syntax
UlColourScheme = GetCurrentColourScheme()
Description

Returns the currently active colour scheme for styled components such as MenuEx, ToolbarEx and Rebars.
The returned value can be any of the following constants: -

#Ul COL OURMODE_DEFAULT_BLUE The User Interface is currently using the default blue colour scheme.

#Ul COLOURMODE_DEFAULT_OLI VE The User Interface is currently using the default olive colour scheme.

#Ul COLOURMODE_DEFAULT_SI LVER The User Interface is currently using the default silver colour scheme.

#Ul COLOURMODE_DEFAULT_GREY The User Interface is currently using the default classic grey colour scheme.
#Ul COL OURMODE_CUSTOM_BLUE The User Interface is currently using the custom blue colour scheme.

#Ul COLOURMODE_CUSTOM _OLI VE The User Interface is currently using the custom olive colour scheme.

#Ul COLOURMODE_CUSTOM_SI LVER The User Interface is currently using the custom silver colour scheme.

#Ul COLCURMODE_CUSTOM_GREY The User Interface is currently using the custom classic grey colour scheme.

Colours & Images Index

5.10.4 GetUIColour

GetUIColour()
Syntax
Colour.l = GetUIColour(Style.l, Component.l, ColourScheme.l)
Description
Returns an RGB colour from the specified style, component and colour scheme.
The following table shows the available styles and components contained within that style:-
#Ul STYLE_V\HI DBEY
#menuTi t | eText Col or

#menuTi t | eHot Text Col or

#menuTi t | eHel dText Col or

© 2025 Chris Deeney, Hash Design

126

ProGUI V1.44

#menuTi t | el nacti veText Col or
#menuText Col or

#di sabl edCol or

#menuHot Col or

#menuHot Bor der

#menuBar Col or

#menuHel dBor der

#separ at or Bar

#background
#menuCheckboxBackgr ound
#menuCheckboxSel ect edBackgr ound
#menuCheckboxDi sabl edBackgr ound
#menuCheckboxDi sabl edBor der
#menuCheckboxBor der
#menuCheckboxSel ect edBor der
#menuDr opShadow

#menuHel dCol or

#sel ect edCol or

#sel ect edBor der

#sel ect edText Col or

#Ul STYLE_OFFI CE2003 / #Ul STYLE_OFFI CE2007

#menuTi t | eText Col or

#menuTi t | eHot Text Col or

#menuTi t | eHel dText Col or

#menuTi t| el nacti veText Col or

#menuText Col or

#di sabl edCol or

#menuHot Gr adi ent Col or 1

#menuHot Gr adi ent Col or 2

© 2025 Chris Deeney, Hash Design

Reference Manual 127

#menuHot Bor der

#menuHel dGr adi ent Col or 1
#menuHel dGr adi ent Col or 2
#menuHel dBor der
#menuCheckboxBackgr ound
#menuCheckboxSel ect edBackgr ound
#menuCheckboxDi sabl edBor der
#menuCheckboxBor der
#menuCheckboxSel ect edBor der
#menuDr opShadow

#bar Gr adi ent Col or 1

#bar Gr adi ent Col or 2

#bar Gr adi ent Col or 3

#bar Gr adi ent Col or 4
#separ at or Bar
#sel ect edCol or

#sel ect edBor der

#sel ect edText Col or
#background

#r ebar Backgroundl

#r ebar Backgr ound2

#t ool stri pBackgroundl

#t ool stri pBackground2

#t ool stri pBackground3

#t ool stri pBackground4

#t ool stri pDropdownGr adi ent 1
#t ool stri pDropdownGr adi ent 2
#t ool stri pDropdownGr adi ent 3

#t ool stri pDropdownGr adi ent 4

© 2025 Chris Deeney, Hash Design

128 ProGUI V1.44

#t ool stri pShadow
#gri pper Solid

#gri pper Shadow

#Sel ect Gradi ent Col or 1

#Sel ect Gr adi ent Col or 2

#St i ckySel ect Gradi ent Col or1

#Sti ckySel ect Gradi ent Col or 2

#St i ckySel ect Bor der Col or

#t ool bar Butt onText Col or

#t ool bar But t onHot Text Col or

#t ool bar Butt onDi sabl edText Col or

#t ool bar Hot Gr adi ent Col or 1

#t ool bar Hot Gr adi ent Col or 2

#t ool bar Separ at or

#t ool bar Separ at or Shadow

ColourScheme.l can be any of the following constants: -

#Ul COLOURMODE_DEFAULT

#Ul COLOURMODE_DEFAULT_BLUE
#Ul COLOURMODE_DEFAULT_OLI VE
#Ul COLOURMODE_DEFAULT_SI LVER
#Ul COLOURMODE_DEFAULT_GREY
#Ul COL OURMODE_CUSTOM

#Ul COL OURMODE_CUSTOM _BLUE

#Ul COLOURMODE_CUSTOM OLI VE

#Ul COLOURMODE_CUSTOM _SI LVER

#Ul COLOURMODE_CUSTOM_GREY

Returns true if successful.

Automatically selects "best match" colour scheme based on user's Windows
theme colour.
Selects the User Interface using the default blue colour scheme.

Selects the User Interface using the default olive colour scheme.
Selects the User Interface using the default silver colour scheme.
Selects the User Interface using the default classic grey colour scheme.

Automatically selects "best match" custom colour scheme based on user's
Windows theme colour.
Selects the User Interface using the custom blue colour scheme.

Selects the User Interface using the custom olive colour scheme.
Selects the User Interface using the custom silver colour scheme.

Selects the User Interface using the custom classic grey colour scheme.

Colours & Images Index

© 2025 Chris Deeney, Hash Design

Reference Manual 129

5.10.5 SetUIColour

SetUIColour()

Syntax
Success = SetUIColour(Style.l, Component.l, Colour.l, ColourScheme.l, noUpdate.b)

Description

Sets the RGB colour for the specified component in the specified style and custom colour scheme.
Colour.l can be made using the RGB command.

Note: If the component is #menuDr opShadow, then Colour.l is made using MakeColour (This is so the alpha channel
can be set).

Note: The constant #MaxUIComponents stores the number of configurable colour components and can be used when
iterating through.

If noUpdate.b is set to True then no updating of ProGUI controls occurs when the colour is changed, useful for
changing a large list of colours and then updating the Ul when the last colour is set (by specifying noUpdate.b as
False/null) .

Returns true if successful.
The following table shows the available styles and components contained within that style:-

#Ul STYLE_WHI DBEY

#menuTi t | eText Col or
#menuTi t | eHot Text Col or
#menuTi t | eHel dText Col or
#menuTi t| el nacti veText Col or
#menuText Col or

#di sabl edCol or
#menuHot Col or
#menuHot Bor der
#menuBar Col or
#menuHel dBor der
#separ at or Bar

#backgr ound

#menuCheckboxBackgr ound

© 2025 Chris Deeney, Hash Design

130 ProGUI V1.44

#menuCheckboxSel ect edBackgr ound
#menuCheckboxDi sabl edBackgr ound
#menuCheckboxDi sabl edBor der
#menuCheckboxBor der
#menuCheckboxSel ect edBor der
#menuDr opShadow

#menuHel dCol or

#sel ect edCol or

#sel ect edBor der

#sel ect edText Col or

#Ul STYLE_OFFI CE2003 / #UlI STYLE_OFFI CE2007

#menuTi t | eText Col or

#menuTi t | eHot Text Col or
#menuTi t | eHel dText Col or
#menuTi tl el nacti veText Col or
#menuText Col or

#di sabl edCol or

#menuHot Gr adi ent Col or 1
#menuHot Gr adi ent Col or 2
#menuHot Bor der

#menuHel dGr adi ent Col or 1
#menuHel dGr adi ent Col or 2
#menuHel dBor der
#menuCheckboxBackgr ound
#menuCheckboxSel ect edBackgr ound
#menuCheckboxDi sabl edBor der
#menuCheckboxBor der
#menuCheckboxSel ect edBor der

#menuDr opShadow

© 2025 Chris Deeney, Hash Design

Reference Manual 131

#bar Gr adi ent Col or 1
#bar Gr adi ent Col or 2
#bar Gr adi ent Col or 3
#bar Gr adi ent Col or 4

#separ at or Bar

#sel ect edCol or

#sel ect edBor der

#sel ect edText Col or
#background

#r ebar Backgr oundl

#r ebar Backgr ound2

#t ool stri pBackgroundl

#t ool stri pBackground2

#t ool stri pBackground3

#t ool stri pBackground4

#t ool stri pDropdownGr adi ent 1
#t ool stri pDropdownGr adi ent 2
#t ool stri pDropdownGr adi ent 3
#t ool stri pDropdownGr adi ent 4
#t ool stri pShadow

#gri pper Solid

#gri pper Shadow

#Sel ect Gradi ent Col or 1

#Sel ect Gr adi ent Col or 2

#St i ckySel ect Gradi ent Col or1
#Sti ckySel ect Gradi ent Col or 2
#St i ckySel ect Bor der Col or

#t ool bar Butt onText Col or

#t ool bar But t onHot Text Col or

© 2025 Chris Deeney, Hash Design

132 ProGUI V1.44

#t ool bar But t onDi sabl edText Col or
#t ool bar Hot Gr adi ent Col or 1

#t ool bar Hot Gr adi ent Col or 2

#t ool bar Separ at or

#t ool bar Separ at or Shadow

ColourScheme.l can be any of the following constants: -

#Ul COLOURMODE_CUSTOM Automatically selects "best match" custom colour scheme based on user's
Windows theme colour.
#Ul COLOURMODE_CUSTOM_BLUE Selects the User Interface using the custom blue colour scheme.

#Ul COLOURMODE_CUSTOM_OLI VE Selects the User Interface using the custom olive colour scheme.
#Ul COLOURMODE_CUSTOM_SI LVER Selects the User Interface using the custom silver colour scheme.

#Ul COLOURMODE_CUSTOM_GREY Selects the User Interface using the custom classic grey colour scheme.

Colours & Images Index

5.10.6 MakeColour
MakeColour()

Syntax
Colour.l = MakeColour(Alpha.l, Red.l, Green.l, Blue.l)

Description

Returns a Windows compatible ABGR colour with alpha channel, useful for some Windows API calls.

Colours & Images Index

5.10.7 MakeRGB

MakeRGB()

Syntax
Colour.| = MakeRGB(Red.l, Green.l, Blue.l)

Description

Returns an RGB colour.

© 2025 Chris Deeney, Hash Design

Reference Manual 133

Colours & Images Index
5.10.8 AlphaBlendColour

AlphaBlendColour()
Syntax
Colour.l = AlphaBlendColour(LeftColour.l , RightColour.l, Alpha.l)

Description

Returns a 32bit RGB colour value with alpha channel that is the combination of LeftColour + (RightColour mixed by
Alpha), Alpha can be from 0 to 255, 255 being opaque.

Colours & Images Index

5.10.9 CreateGradient

CreateGradient()
Syntax
Gradient.i = CreateGradient(Style.l, Colourl.l, Colour2.1)

Description

Creates a linear gradient from Colourl.l to Colour2.l. Colourl.l and Colour2.l are made with the MakeColour
command. Style.l can be be #Verti cal GRADI ENT, #Rect angl e GRADI ENT, #El | i pseGRADI ENT or zero for a horizontal
gradient.

More blend colours can also be inserted into the gradient using the SetGradientColour command.

Returns a handle to the newly created gradient.

Colours & Images Index
5.10.10 SetGradient

SetGradient()
Syntax
Success = SetGradient(Gradient.i, Style.l)

Description

Sets the style/type of a previously created gradient.
Gradient.i is a handle to a gradient. Style.l can be be #Ver ti cal GRADI ENT, #Rect angl e GRADI ENT,
#EI | i pseGRADI ENT or 0 for a horizontal gradient.

Returns true for success.

© 2025 Chris Deeney, Hash Design

5

134 ProGUI V1.44

Colours & Images Index

10.11 SetGradientColour
SetGradientColour()
Syntax
Success = SetGradientColour(Gradient.i, Position.f, Colour.l)
Description
Sets the colour of a previously created gradient at a certain position in that gradient.
Gradient.i is a handle to a gradient. Position.f specifies at what position in the gradient the colour will be set and

must be a floating point number from 0 to 1, e.g. 0.5 would set the colour at halfway in the gradient.

Returns true for success.

Colours & Images Index

‘

.10.12 GetGradientColour
GetGradientColour()
Syntax
Colour.| = GetGradientColour(Gradient.i, Position.f)
Description
Returns the colour of a previously created gradient at a certain position in that gradient.

Gradient.i is a handle to a gradient. Position.f specifies at what position in the gradient the colour will be retrieved
from and must be a floating point number from 0 to 1, e.g. 0.5 would get the colour at halfway in the gradient.

Colours & Images Index

‘

.10.13 RemoveGradientColour
RemoveGradientColour()
Syntax
Success = RemoveGradientColour(Gradient.i, Position.f)
Description

Remowes the colour of a previously created gradient at a certain position in that gradient.
Gradient.i is a handle to a gradient. Position.f specifies at what position in the gradient the colour will be removed
from and must be a floating point number from 0 to 1, e.g. 0.5 would remove the colour at halfway in the gradient if

exists.

© 2025 Chris Deeney, Hash Design

Reference Manual 135

Returns true for success.

Colours & Images Index

5.10.14 FreeGradient
FreeGradient()

Syntax
Success = FreeGradient(Gradient.i)
Description

Frees the memory allocated for a previously created gradient.
Gradient.i is a handle to a gradient.

Returns true for success.

Colours & Images Index

5.10.15 Loadlmg

LoadIimg()

Syntax
*newlmage = Loadlmg(Path.s, Width.l, Height.l, Flags.i)

Description
Loads a PNG, JPG, BMP or Icon image.
Path.s specifies the path and file name of the image/icon that you would like to load (for loading multiple images from
the same directory, ImgPath can be used). Width.l and Height.l are the desired dimensions of the image. If Path.s
points to an icon that has multiple resolution versions contained inside itself then the closest match version will be
selected based on Width.l and Height.|, alternatively if Path.s is an image then the image will be resized to the

specified dimensions. Width.l and Height.l can also be NULL in order to use the image/icon dimension's actual size.

Flags.i can be #I ng_Ret ur nl con in order to automatically cowert the returned *newlmage to an icon (HICON) if in
another image format.

Returns a pointer to the new image data (HBITMAP) or icon (HICON), zero for failure.

The returned *newlmage can later be destroyed when not needed anymore by using the Freelmg command.

Colours & Images Index

5.10.16 ImgPath

ImgPath()

Syntax

© 2025 Chris Deeney, Hash Design

136 ProGUI V1.44

ImgPath(Path.s)
Description

Sets the default root path that Loadimg will use to load images.

Colours & Images Index

‘

.10.17 ImgWidth
ImgWidth()

Syntax
Pixels = ImgWidth(*Image)
Description

Returns the width of an image (HBITMAP) or icon (HICON) in pixels.

Colours & Images Index

‘

.10.18 ImgHeight
ImgHeight()
Syntax
Pixels = ImgHeight(*Image)
Description

Returns the height of an image (HBITMAP) or icon (HICON) in pixels.

Colours & Images Index

5.10.19 ImgBlend

ImgBlend()
Syntax
*newlmage = ImgBlend(*Sourcelmage, AlphaChannel.f, Contrast.f, Brightness.f, BlendColor.l, BlendAmount.f,
Flags.i)
Description

ImgBlend is a powerful and versatile image effect command for creating a new image/icon based on altering a source
icon or image's alpha channel, contrast, brightness and/or blend with another colour. A common use for this
command is automatically generating images for hot and disabled states (based on one stored image) for use in

other ProGUI commands.

© 2025 Chris Deeney, Hash Design

Reference Manual 137

*Sourcelmage is a pointer to the icon/image that you wish to manipulate. AlphaChannel.f specifies the new
transparency level (also taking into account the existing alpha channel data) and can be in the range of 0 to 255 (0 =
fully transparent, 255 = solid). Contrast.f specifies the new contrast level and can be in the range of -255 to 255, this
parameter can also be Null (having no effect on contrast). Brightness.f specifies the new brightness level and can be
in the range of -255 to 255, this parameter can also be Null (having no effect on brightness). BlendColor.| specifies an
RGB colour value that will be used with BlendAmount.f (O to 255) in order to blend the new image to that colour,
BlendColor.l and BlendAmount.f can both be Null in order to have no effect. Flags.i can contain the following

constants: -

#1 mgBl end_Greyscal e Conwerts the image to grey scale, taking effect before any of the other image
effects are added (if any).

#1 mgBl end_Ret urnl con Returns an Icon (HICON) as *newlmage instead of an image (HBITMAP).

#1 ngBl end_Dest royOri gi nal Destroys the original *Sourcelmage.

Returns a pointer to the new image/icon or zero for failure.

The returned *newlmage can later be destroyed when not needed anymore by using the Freelmg command.

Colours & Images Index

5.10.20 ImgHueBlend

ImgHueBlend()

Syntax

*newlmage = ImgHueBlend(*Sourcelmage, AlphaChannel.f, HueColor.l, Saturation.f, Lightness.f, BlendColor.l,
BlendAmount.f, Flags.i)

Description

ImgHueBlend is a powerful and versatile image effect command for creating a new image/icon based on altering a
source icon/image's alpha channel, colour hue and/or blend amount with another colour. A common use for this
command is automatically generating images for hot and disabled states (based on one stored image) for use in
other ProGUI commands.

*Sourcelmage is a pointer to the icon/image that you wish to manipulate. AlphaChannel.f specifies the new
transparency level (also taking into account the existing alpha channel data) and can be in the range of 0 to 255 (0 =
fully transparent, 255 = solid). HueColor.f specifies the new RGB colour hue (tint). Saturation.f adjusts the saturation
of the image (range -1 to 1) and can be null. Lightness specifies the new luminance of the image (in the range of 0 to
1). BlendColor.| specifies an RGB colour value that will be used with BlendAmount.f (0 to 255) in order to blend the
new image to that colour, Color.| and BlendAmount.f can both be Null in order to have no effect. Flags.i can contain
the following constants: -

#1 mgBl end_Ret ur nl con Returns an Icon (HICON) as *newlmage instead of an image (HBITMAP).
#| ngBl end_Dest royOri gi nal Destroys the original *Sourcelmage.

Returns a pointer to the new image/icon or zero for failure.

The returned *newimage can later be destroyed when not needed anymore by using the Freelmg command.

Colours & Images Index

© 2025 Chris Deeney, Hash Design

138 ProGUI V1.44

5.10.21 Freelmg

Freelmg()
Syntax
Success = Freelmg(*Image)

Description
Remowes an image or icon from memory.
*Image is the handle of the HBITMAP or HICON that you want to destroy.

Returns nonzero for success, zero for failure.

Colours & Images Index

© 2025 Chris Deeney, Hash Design

Reference Manual 139

5.11 Skins

ProGUI - Skins

Overview

Skins allow ProGUI controls/components (and user made controls) to be easily and quickly 'skinned' to a particular
graphical style. Includes various commands for creating, loading, saving and manipulating skins.

The skin subsystem in ProGUI works on the principal that each skin can contain one or more components that have
states with properties that describe the component in each state. Skins are very flexible in ProGUI and components,
states and properties can be easily created, added or retrieved simply by specifying a name for that component,
state or property (as a text string). Skins can also have separate colour themes, please see SetSkinProperty.

The property's value is a text string that describes what a certain part of a control's appearance looks like in that
particular state. The language used for describing a property in ProGUI is a simplified version of CSS (Cascading
Style Sheets): please refer to the documentation of each ProGUI component to see the states and properties that it
supports and the individual CSS property markup. Skins are stored as an XML file (.skn’) and can be easily edited
with a text editor (or can be saved as a single compressed ".sknz' package containing the XML file and all the skin's
data resources).

Command Index

GetDefaultGlobalSkinColourTheme
SetGlobalSkinColourTheme
GetGlobalSkinColourTheme
CreateSkin

SetSkinPath

LoadSkin

SawveSkin

GetSkinName

SetSkinName

GetSkinHandle
SetSkinProperty
GetSkinProperty
GetSkinPropertyParam
SetSkinPropertyParam
GetSkinProperty SubParam
CountSkinPropertySubParams
GetSkinPropertyColour
GetSkinProperty SubParamColour
GetSkinPropertyData
GetSkinPropertyDataSize
SetSkinPropertyData
SetSkinPropertyDataSize
SetSkinAutoUpdate
GetSkinAutoUpdate
UpdateSkins

CopySkin
CopySkinComponent
MergeSkins

IsSkin

FreeSkin

© 2025 Chris Deeney, Hash Design

140 ProGUI V1.44

Reference Manual - Index
5.11.1 GetDefaultGlobalSkinColourTheme
GetDefaultGlobalSkinColourTheme()

Syntax
ColourThemeName$ = GetDefaultGlobalSkinColourTheme()
Description

Returns the name (as a string) of the default system detected colour theme.

ColourThemeName$ can be: "blue", "silver", "olive" or "grey".

Skins Index
11.2 SetGlobalSkinColourTheme
SetGlobalSkinColourTheme()

‘

Syntax

Success = SetGlobalSkinColourTheme(Name.s)

Description

Sets the global skin colour theme name that all skins will use if supported. Name.s specifies the name of the colour

scheme.
All previously created skinned controls will automatically update to the new colour theme (see UpdateSkins).

Returns true for success.

Skins Index

5.11.3 GetGlobalSkinColourTheme
GetGlobalSkinColourTheme()

Syntax

Name$ = GetGlobalSkinColourTheme()

Description

Gets the current global skin colour theme name that all skins will use if supported.

Returns the name of the colour scheme as a string.

Skins Index

© 2025 Chris Deeney, Hash Design

Reference Manual 141

5.11.4 CreateSkin

CreateSkin()

Syntax
Skin.i = Create Skin(Name$)

Description
Creates an empty skin. Name$ specifies the name of the new skin.

Returns a handle to the newly created skin or zero for failure.

Skins Index

5.115 SetSkinPath

SetSkinPath()

Syntax
Success = SetSkinPath(Path$)

Description
Sets the default directory where ProGUI will load and save skins to. Path$ specifies the desired directory.

Returns true for success, zero for failure.

Skins Index
5.11.6 LoadSkin

LoadSkin()

Syntax
Skin.i = LoadSkin(Path$)

Description

Loads a skin. Path$ can be a full file path to the skin that you want to load or just the name of the skin, in which
case ProGUI will search the default skin directory for the name.

Returns a handle to the newly loaded skin or zero for failure.

Skins Index

© 2025 Chris Deeney, Hash Design

142 ProGUI V1.44

5.11.7 SaveSkin

SaveSkin()
Syntax
Success = SaveSkin(Skin.i, Path$, Flags.i)

Description

Sawes a skin. Skin.i is the handle to the skin that you wish to save. Path$ is the optional destination path and
filename of where you want the skin to be saved (can be a full path to the skin or just the name of the skin, in which
case ProGUI will save to the default skin directory). If a filename isn't specified in Path$ then the skin's internal name
will be used. Flags.i is optional and can be #SKI N_SAVE_PACKAGE in order to save the skin as a single compressed
(.sknz) package containing all the skin's data resources. If Flags.i is zero then ProGUI will create a subdirectory
under the name of the skin containing the '.skn' XML file and copies of all the skin's data resources.

Returns true for success, zero for failure.

Skins Index

5.11.8 GetSkinName
GetSkinName()

Syntax
Name$ = GetSkinName(Skin.i)

Description

Returns the name of a skin specified by the skin handle Skin.i.

Skins Index

5.11.9 SetSkinName

SetSkinName()

Syntax
Success = SetSkinName(Skin.i, Name$)

Description
Sets the name of a skin specified by the skin handle Skin.i.

Returns true for success, zero for failure.

Skins Index

© 2025 Chris Deeney, Hash Design

Reference Manual 143

5.11.10 GetSkinHandle

GetSkinHandle()
Syntax
Skin.i = GetSkinHandle(Name$)
Description

Returns the handle of a previously created/loaded skin by Name$ (case insensitive) or false if the skin is not found.

Skins Index

5.11.11 SetSkinProperty

SetSkinProperty()

Syntax
Success = SetSkinProperty(Skin.i, Component$, State$, Property$, Value$)

Description

Sets a property of a skin component state. Skin.i specifies the handle of the skin. Component$ is the name of the
skin's component (e.g. "ButtonEx") and can also specify that the property is for a specific colour theme by adding a
colon and then the colour scheme name e.g. "ButtonEx : black". State$ is the name of the component's state (e.qg.
"normal”, "hot", "disabled", ...). Property$ is the name of the component state's property that you wish to set. Value$
is the new value for that state's property.

If the property describes a file path, font or gradient then ProGUI will try and load/create the resource into memory
after which the resource data can be accessed with GetSkinPropertyData.

By default, all previously created controls that use the specified skin will be automatically updated after the command
is called (see UpdateSkins). If you're making a lot of calls to SetSkinProperty (for example modifying large portions of
an existing skin) then the SetSkinAutoUpdate command can be used to temporarily disable the realtime updating
(which can be very slow).

Returns true for success, zero for failure.

Skins Index

5.11.12 GetSkinProperty

GetSkinProperty()
Syntax
Value$ = GetSkinProperty(Skin.i, Component$, State$, Property$)

Description

© 2025 Chris Deeney, Hash Design

144 ProGUI V1.44

Returns the value of a skin component state's property. Skin.i specifies the handle of the skin. Component$ is the
name of the skin's component (e.g. "ButtonEx") and can also specify that the property is for a specific colour theme
by adding a colon and then the colour scheme name e.g. "ButtonEx : black". State$ is the name of the component's
state (e.g. "normal", "hot", "disabled", ...). Property$ is the name of the component state's property that you wish to
retrieve the value for.

If the property contains a colour then the RGB colour value is returned.

See GetSkinPropertyParam, GetSkinPropertySubParam, GetSkinPropertyData.

Skins Index

5.11.13 GetSkinPropertyParam

GetSkinPropertyParam()

Syntax
Value$ = GetSkinPropertyParam(Skin.i, Component$, State$, Property$, Parameter$)
Description

Returns the value of a skin component state's property parameter. A property parameter is defined by a name label
followed by a colon then the parameter's value followed by a terminating semicolon, e.g. "Colour: Red; Image:
test.png;". Skin.i specifies the handle of the skin. Component$ is the name of the skin's component (e.g. "ButtonEx")
and can also specify that the property is for a specific colour theme by adding a colon and then the colour scheme
name e.g. "ButtonEx : black". State$ is the name of the component's state (e.g. "normal”, "hot", "disabled", ...).
Property$ is the name of the component state's property. Parameter$ is the name of the property's parameter that
you want to retrieve the value for.

If the property parameter contains a colour then the RGB colour value is returned.

See GetSkinPropertyColour, GetSkinPropertySubParam, CountSkinProperty SubParams.

Skins Index

5.11.14 SetSkinPropertyParam

SetSkinPropertyParam()
Syntax
Success = SetSkinPropertyParam(Skin.i, Component$, State$, Property$, Parameter$, Value$)
Description

Sets a property parameter of a skin component state. A property parameter is defined by a name label followed by a
colon then the parameter's value followed by a terminating semicolon, e.g. "Colour: Red; Image: test.png;". Skin.i
specifies the handle of the skin. Component$ is the name of the skin's component (e.g. "ButtonEx") and can also
specify that the property is for a specific colour theme by adding a colon and then the colour scheme name e.g.
"ButtonEx : black". State$ is the name of the component's state (e.g. "normal”, "hot", "disabled", ...). Property$ is
the name of the component state's property that you wish to set. Value$ is the new value for that state's property.

© 2025 Chris Deeney, Hash Design

Reference Manual 145

If the property describes a file path, font or gradient then ProGUI will try and load/create the resource into memory
after which the resource data can be accessed with GetSkinPropertyData.

By default, all previously created controls that use the specified skin will be automatically updated after the command
is called (see UpdateSkins). If you're making a lot of calls to SetSkinPropertyParam (for example modifying large
portions of an existing skin) then the SetSkinAutoUpdate command can be used to temporarily disable the realtime

updating (which can be very slow).

Returns true for success, zero for failure.

Skins Index

5.11.15 GetSkinPropertySubParam

GetSkinPropertySubParam()

Syntax

Value$ = GetSkinPropertySubParam(Skin.i, Component$, State$, Property$, Parameter$, Index.i)

Description

Returns the value of a skin component state property parameter's comma separated sub parameter. Skin.i specifies
the handle of the skin. Component$ is the name of the skin's component (e.g. "ButtonEx") and can also specify that
the property is for a specific colour theme by adding a colon and then the colour scheme name e.g. "ButtonEx :
black". State$ is the name of the component's state (e.g. "normal", "hot", "disabled", ...). Property$ is the name of
the component state's property. Parameter$ is the name of the property's parameter. Index is the desired comma
separated sub parameter.

If the property parameter sub parameter contains a colour then the RGB colour value is returned.

See CountSkinPropertySubParams, GetSkinProperty SubParamColour.

Skins Index

5.11.16 CountSkinPropertySubParams

CountSkinPropertySubParams()

Syntax

NumberOfSubParams = CountSkinPropertySubParams(Skin.i, Component$, State$, Property$, Parameter$)
Description

Returns the number of comma separated sub parameters in a skin component state property's parameter . Skin.i
specifies the handle of the skin. Component$ is the name of the skin's component (e.g. "ButtonEx") and can also
specify that the property is for a specific colour theme by adding a colon and then the colour scheme name e.g.
"ButtonEx : black". State$ is the name of the component's state (e.g. "normal”, "hot", "disabled", ...). Property$ is
the name of the component state's property. Parameter$ is the name of the property's parameter value that you want

to query.

© 2025 Chris Deeney, Hash Design

146 ProGUI V1.44

Skins Index

5.11.17 GetSkinPropertyColour

GetSkinPropertyColour()

Syntax

Colour = GetSkinPropertyColour(Skin.i, Component$, State$, Property$)

Description

Returns the RGB colour value of a skin component state's property (if it contains a colour) otherwise -1. Skin.i
specifies the handle of the skin. Component$ is the name of the skin's component (e.g. "ButtonEx") and can also
specify that the property is for a specific colour theme by adding a colon and then the colour scheme name e.qg.
"ButtonEx : black". State$ is the name of the component's state (e.g. "normal”, "hot", "disabled", ...). Property$ is
the name of the component state's property that you wish to retrieve the colour value from.

Skins Index

5.11.18 GetSkinPropertySubParamColour
GetSkinPropertySubParamColour()

Syntax

Colour = GetSkinPropertySubParamColour(Skin.i, Component$, State$, Property$, Parameter$, Index.i)

Description

Returns the RGB colour value of a skin component state property parameter's comma separated sub parameter (if it
contains a colour) otherwise -1. Skin.i specifies the handle of the skin. Component$ is the name of the skin's
component (e.g. "ButtonEx") and can also specify that the property is for a specific colour theme by adding a colon
and then the colour scheme name e.g. "ButtonEx : black". State$ is the name of the component's state (e.g.
"normal”, "hot", "disabled", ...). Property$ is the name of the component state's property. Parameter$ is the name of
the property's parameter. Index is the desired comma separated sub parameter that you want to retrieve the colour

value from.

Skins Index

5.11.19 GetSkinPropertyData

GetSkinPropertyData()

Syntax

*Data = GetSkinPropertyData(Skin.i, Component$, State$, Property$)

Description

Returns a pointer to a skin component state's property resource data. For example, if the property contains a path to
an image then *Data would point to the image data (HBITMAP) in memory. Skin.i specifies the handle of the skin.

© 2025 Chris Deeney, Hash Design

Reference Manual 147

Component$ is the name of the skin's component (e.g. "ButtonEx") and can also specify that the property is for a
specific colour theme by adding a colon and then the colour scheme name e.g. "ButtonEx : black". State$ is the
name of the component's state (e.g. "normal”, "hot", "disabled", ...). Property$ is the name of the component state's
property that you wish to retrieve the data from.

See GetSkinPropertyDataSize, SetSkinPropertyData.

Skins Index

5.11.20 GetSkinPropertyDataSize

GetSkinPropertyDataSize()
Syntax
Size = GetSkinPropertyDataSize(Skin.i, Component$, State$, Property$)

Description

Returns the size of the skin component state's property resource data or zero if the property has no resource data.
For example, if the property contains a path to an image then the command would return the image data's size in
memory. Skin.i specifies the handle of the skin. Component$ is the name of the skin's component (e.g. "ButtonEx")
and can also specify that the property is for a specific colour theme by adding a colon and then the colour scheme
name e.g. "ButtonEx : black". State$ is the name of the component's state (e.g. "normal”, "hot", "disabled", ...).
Property$ is the name of the component state's property that you wish to retrieve the data size from.

Skins Index

5.11.21 SetSkinPropertyData

SetSkinPropertyData()
Syntax
Success = SetSkinPropertyData(Skin.i, Component$, State$, Property$, *ResourceData)

Description

Sets a skin component state's property resource data. Skin.i specifies the handle of the skin. Component$ is the
name of the skin's component (e.g. "ButtonEx") and can also specify that the property is for a specific colour theme
by adding a colon and then the colour scheme name e.g. "ButtonEx : black". State$ is the name of the component's
state (e.g. "normal”, "hot", "disabled", ...). Property$ is the name of the component state's property that you wish to
set the resource data for. *ResourceData is a pointer to the resource data in memory.

Returns true for success, zero for failure.

See SetSkinPropertyDataSize.

Skins Index

© 2025 Chris Deeney, Hash Design

148 ProGUI V1.44

5.11.22 SetSkinPropertyDataSize

SetSkinPropertyDataSize()

Syntax
Success = SetSkinPropertyDataSize(Skin.i, Component$, State$, Property$, Size.i)

Description
Sets a skin component state's property resource data size. Skin.i specifies the handle of the skin. Component$ is
the name of the skin's component (e.g. "ButtonEx") and can also specify that the property is for a specific colour
theme by adding a colon and then the colour scheme name e.g. "ButtonEx : black". State$ is the name of the
component's state (e.g. "normal”, "hot", "disabled", ...). Property$ is the name of the component state's property that
you wish to set the resource data size for. Size.i is the size of the resource data in memory.

Returns true for success, zero for failure.

Skins Index

5.11.23 SetSkinAutoUpdate

SetSkinAutoUpdate()
Syntax
Success = SetSkinAutoUpdate(Skin.i, State.b)
Description

Sets whether all the previously created controls using the specified Skin handle are automatically updated when the
skin is changed. State can be true to enable or false to disable.

This command is useful when modifying/creating a skin with a lot of calls to SetSkinProperty as by default every call
will update in realtime every control using the edited skin (that's if the control handles the #Wv_UPDATESKI N
message).

Returns true for success, zero for failure.

See GetSkinAutoUpdate.

Skins Index
5.11.24 GetSkinAutoUpdate

GetSkinAutoUpdate()
Syntax
State = GetSkinAutoUpdate(Skin.i)

Description

© 2025 Chris Deeney, Hash Design

Reference Manual 149

Returns true if all the previously created controls using the specified Skin handle are automatically updated when the
skin is changed, false otherwise.

Skins Index

5.11.25 UpdateSkins

UpdateSkins()

Syntax
Success = Update Skins(Skin.i)
Description

Updates all the previously created controls that are using the specified Skin handle or if Skin is zero then every
skinned control is updated. Controls are only updated however, if it's skin has the SkinAutoUpdate feature enabled
(by default every newly created skin has this feature turned on).

For creating your own user skinned control using the ProGUI skin subsystem:

The control must handle the #Wv_UPDATESKI N message that is sent to the control's message queue. All skinned
ProGUI controls handle this message.

If the passed IParam of the message is false you must update your control with it's current skin. If IParam is not false
and equal to the handle of your skin then update your control with it's current skin otherwise ignore the message.

Returns true for success, zero for failure.

See SetSkinAutoUpdate, SetSkinProperty, SetGlobalSkinColourTheme, SetUIColourMode.

Skins Index
5.11.26 CopySkin
CopySkin()

Syntax
NewSkin.i = CopySkin(Skin.i)
Description
Copies an existing skin into a new skin. Skin.i specifies the handle of the skin that you wish to copy.

Returns the handle of the new copied skin or zero for failure.

Skins Index

5.11.27 CopySkinComponent

CopySkinComponent()

Syntax

© 2025 Chris Deeney, Hash Design

150 ProGUI V1.44

Success = CopySkinComponent(Skin.i, ComponentName.s, NewName.s)

Description

Creates a copy of the specified ComponentName.s as NewName.s. Skin.i is the handle of the skin that contains the
ComponentName.

Returns true for success or zero for failure.

Skins Index

5.11.28 MergeSkins

MergeSkins()

Syntax
Success = Merge Skins(SourceSkin.i, DestinationSkin.i)

Description
Merges the source skin into the destination skin.

Returns true for success or zero for failure.

Skins Index
5.11.29 IsSkin

IsSkin()

Syntax
Result = IsSkin(Skin.i)
Description

Returns true if the passed Skin.i handle is a valid skin, false otherwise.

Skins Index

5.11.30 FreeSkin

FreeSkin()

Syntax
Success = FreeSkin(Skin.i)

Description

© 2025 Chris Deeney, Hash Design

Reference Manual 151

Frees a skin from memory including any data resources that the skin uses. Skin.i specifies the handle of the skin
that you wish to free.

Returns true for success, zero for failure.

Skins Index

© 2025 Chris Deeney, Hash Design

Registering

154 ProGUI V1.44

6 Registering
Register

ProGUI defaults to trial mode when incorrect Key Codes are entered: 7:)1/0

- Will timeout at around 5 minutes per session, this is so you can test out your
applications with ProGUI before deciding whether to purchase a license for the
unrestricted version.

Full version of ProGUI Gold (With full source code!):
Price for full gold version: €20.00 EUR ($22 USD)

Registering the gold version of ProGUI remowves the timeout limit and gives you a license to use ProGUI in your
applications commercially. Full source code to ProGUI! and a license to use it in your own projects is also included
in the package!

Your support counts!

Payment by Paypal:
Please direct your browser to the following URL in order to purchase a license via Paypal:
http://www.progui.co.uk/register.html

Once payment has been made you will receive your personal Key Codes shortly via email also containing a download
link to the latest version of ProGUI (or ProGUI Gold zip archive if purchased).

© 2025 Chris Deeney, Hash Design

Contact

156 ProGUI V1.44

4 Contact

Contact

Please send general enquiries regarding ProGUI to the following email address: -
Chris Deeney (Developer of ProGUI)

info@progui.co.uk

© 2025 Chris Deeney, Hash Design

Credits

158 ProGUI V1.44

8 Credits

Credits

Thanks to the following people! ...

Dedicated to the loving memory of my father Michael, thank you Dad for all the years of support and encouragement,
Il miss you always.

TS-Soft (Thomas Schulz) for modifying the ProGUI_PB.pb include file to be Unicode compatible! and "Compilerlf
Defined" tip in examples source and other great code and tips, thanks mate!

Bug reporting and testing (In no particular order): TS-Soft (Thomas Schulz), Soner Boztas, Poshu (Poshu Mokona),
GG (Gaétan Gaume), Joaquin Fernandez, Thorsten Hoeppner, Rook Zimbabwe (rest in peace my friend), mrjiles, srod
(Stephen Rodriguez), rsts, Trond, User_Russian, DoubleDutch (Anthony Ball), Kuo, Denis Labarre, Oliver Ebert, Jens
Luehmann, Zach Bartels, electrochrisso, ruslanx, wombats and to anyone else I've forgot! :D Thanks!

Special thanks to electrochrisso and blueb for posting good code examples! on the forums too :)

And to all those that have registered! you make it worth while :) thank you.

© 2025 Chris Deeney, Hash Design

History

160 ProGUI V1.44

9 History

History

07 November 2025 : Version 1.44

- Fixed DPI issues with ExplorerBar.

- Fixed crash with Graph Library (including V2 experimental).

- Updated all binaries and re-compiled with latest PureBasic (V6.30 Beta 4).
- Updated docs.

14 August 2024 : Version 1.43

- Fixed Skin bug with ButtonEx disabled state. (Thanks to Wombats!)

- Fixed custom color bugs with MenuEx. (Thanks to Wombats!)

- Updated all binaries and re-compiled with latest PureBasic (V6.11 LTS).
- Updated docs.

21 July 2024 : Version 1.42

- Fixed compatibility issues with PureBasic V6.11 LTS.
- Updated all binaries and re-compiled with latest PureBasic (V6.11 LTS).
- Updated docs.

22 June 2020 : Version 1.41

- Fixed bug with x64 dll not closing correctly.
- Updated all binaries and re-compiled with latest PureBasic (V5.72 LTS).
- Updated docs.

30 September 2013 : Version 1.39

- Fixed bug with SetTextControlExFont where width and height wasn't updating.

- Fixed bug with RefreshPanelEx, now updates scrollbars and page scrolling if autoscroll enabled.
- Fixed bug with FreePanelEx and FreePanelExPage regarding child windows.

- Fixed bug with certain common controls on PanelEx page rendering black pixels at corners.

- Added new MergeSkins command.

- Added new CopySkinComponent command.

- Added new SetSkinPropertyParam command.

- Added new SetSkinName command.

- Added new SetPanelExUsercallback command.

- Added new GetPanelExUsercallback command.

- Added new GetPanelExBitmap command.

- Added new GetPanelExDC command.

- Added new TextControlExCalcSize command.

- Changed / Improved the skin subsystem quite a bit internally and now uses ZIP to compress the skin packages.
- Improved skin format by embedding none web-safe/standard fonts into skin.

- Changed SetPanelExPageBorder command, added new BorderAutoStretch parameter.

- Updated docs.

© 2025 Chris Deeney, Hash Design

History 161

17 September 2012 : Version 1.38

- Fixed memory leak with FreePanelEx and FreePanelExPage due to some internal buffers not being freed correctly.
(Reported by ruslanx, thanks!)
- Updated docs.

18 August 2012 : Version 1.37

- Fixed bug with sub-menu width when menu scrollable.

- Fixed ExplorerBar IMA on x86 when standard skin used under classic theme in UserLib version due to a bug with
TailBite.

- Fixed rendering bug with SetButtonExSkin not applying button's current state i.e. selected, inbetween, disabled.
- Added new isCollapsed parameter to AddExplorerBarGroup and AddExplorerBarimageGroup.

- Added new GetExplorerBarGroupState command.

- Added new SetExplorerBarGroupState command.

- Updated docs.

30 May 2012 : Version 1.36

- Fixed bug with UserLib version and GadgetList not being restored to none ProGUI GadgetList with TextControlEx
and other skinned controls.

- Added new #PNLX_NOGADGETLI ST style flag (PureBasic specific) to AddPanelExiImagePage and
InsertPanelEximagePage.

- Updated docs.

16 May 2012 : Version 1.35

- Fixed bug with UserLib version and alpha transparency causing a crash due to referencing a null pointer
(GDIAlphaBlend not being imported correctly).

- Fixed bug with Frame3DGadget not being aligned properly in nested PanelEXs.

- Fixed rendering bug with Frame3DGadget inside alpha transparent PanelEx page.

- Fixed bug with UserLib version and skinned controls inside PanelEx page not restoring parent GadgetList which
caused any PureBasic gadgets to be parented to the skinned control instead of the PanelEx page! *Oops!

- Fixed bug with TextControlEXx link ID's not being posted to parent window if not in PanelEx page.

- Updated docs.

05 April 2012 : Version 1.34

- Fixed bug with GDI Plus notification hook/unhook under Windows XP (Microsoft bug).

- Fixed rendering bug with ExplorerBar (Reported by Zach).

- Fixed small device context handle leak on PanelEx resize.

- Fixed bug with AddPanelExPage when skinned control created and then AddPanelExPage called again (which
added the page to the created control!).

- Fixed minor alignment bug with ButtonEx text and no icon.

- Fixed border rendering bug with alpha transparent PanelEx pages.

- Fixed bug with SetPanelExPageScrolling autoscroll not updating if called after controls created into page.

- Fixed/Improved alpha channel rendering of text (GDI doesn't support the alpha channel so ProGUI has to calculate
and add it based on the pixel data).

- Changed behaviour of "Button" class with groupbox style (PB Frame3DGadget) when inside a PanelEx, now
renders directly to PanelEx buffer (no longer flickers).

© 2025 Chris Deeney, Hash Design

162 ProGUI V1.44

- Further optimized rendering of PanelEx, none ProGUI controls are now significantly faster at rendering inside a
PanelEx.

- Changed rendering of alpha transparent PanelEx pages to use GDI AlphaBlend instead of GDI+, now considerably
faster as hardware accelerated.

- Changed ImageButtonEx and TextControlEx internally to be subclassed PanelEXx, less code in core drawpanel
routine, smaller library size and more elegant design.

- Changed ButtonEx, ToggleButtonEx, RadioButtonEx, CheckButtonE, ExplorerBar Header/ltem, text labels now
support escape code effects and multiple lines!

- Changed ButtonEx, ToggleButtonEx, RadioButtonEx, CheckButtonEx, ExplorerBar Header/ltem text, now shows
ellipsis (...) when dimensions too small to contain all of the text.

- Added new GetTextControlExStyle command.

- Updated docs.

26 March 2012 : Version 1.33

- Fixed potential sporadic lock-up and IMA problems on start-up and exit, extremely stable now.

- Fixed bug with RemoveMenultemEx by ID.

- Fixed rendering bug with PureBasic Panel gadget under Windows Server 2003.

- Fixed missing system default ToggleButtonEx skin.

- Fixed rendering bugs with nested alpha transparent PanelEx's and alpha transparency now works with the "root"
PanelEx.

- Fixed #PNLX_STRETCH in PanelEx page, now functional and uses GDI+ however is pretty slow so use sparingly.
- Fixed grainy rendering of system default radio button skin by normalizing the alpha.

- Fixed missing alpha channel of some components when using windows classic visual style and/or on XP
machines.

- Further optimized memory usage and start-up speed by initializing default skins/resources only when used (instead
of everything being created on start-up).

- Changed SetButtonExSkin, now has an extra noRefresh parameter.

- Changed SetSplitterExSkin, now has an extra noRefresh parameter.

- Changed SetGlobalSkinColourTheme, all controls previously created will now automatically update to the new
colour theme.

- Changed SetUIColourMode, now automatically updates all skinned controls to the equivalent theme colour name if
supported.

- Changed SetSkinProperty, now by default automatically updates all previously created controls using the specified
skin.

- Added new #PNLX_TRANSPARENT flag to PanelEx page style.

- Added new "inbetween" state to CheckButtonEx and corresponding skin state properties.

- Added new GetExplorerBarSkin command.

- Added new SetExplorerBarSkin command.

- Added new SetSkinAutoUpdate command.

- Added new GetSkinAutoUpdate command.

- Added new UpdateSkins command.

- Added new GetButtonExState command.

- Added new SetButtonExState command.

- Added new GetButtonExText command.

- Added new SetButtonExText command.

- Added new GetTextControlExText command.

- Updated examples.

- Updated docs.

16 February 2012 : Version 1.32

© 2025 Chris Deeney, Hash Design

History 163

- Fixed huge private-bytes/virtual memory usage due to nested hash maps in skin subsystem, now uses linked lists.
- Fixed CopySkin command in userlib version, now works due to not using maps anymore (tailbite bug).
- Updated docs.

30 January 2012 : Version 1.31

- Fixed startup speed of DLL version, now almost instantaneous startup.

- Fixed visible destroying of ProGUI child windows/controls on exit.

- Fixed GDI+ copy buffer command that was left in by accident causing ProGUI to be twice as slow at rendering.
- Fixed clipping of PanelEx tab theme background.

- Fixed background rendering bug with some transparent areas of PanelEx themes on page change.

- Fixed solid black rectangle bug with static controls on newly displayed PanelEx page.

- Changed ShowPanelExPage, can now also accept page handle as index.

- Changed PanelExPagelndex, now also if a handle to a page is passed instead of ID/Handle of PanelEx then returns
index number of that page.

- Changed MenultemEXx, can now also accept #Pr oGUI _Any as Item ID.

- Updated examples.

- Updated docs.

12 November 2011 : Version 1.30

- Fixed menu selection colours under XP classic with system menu styles.

- Fixed small bug with ButtonEx skin image and text position when not normal state.

- Fixed render bug under Windows Classic themes where gradients were not being displayed in PanelEX's.
- Fixed rendering bug with ButtonEx system skin under Windows Classic themes.

- Fixed bug with GetMenuExBarHeight(), was returning height by 3 pixels out.

- Fixed bug with whole window moving when limit reached in LimitWindowResize() and fixed minimized/maximized
problems.

- Fixed bug with RebarHeight returning incorrect height with menu inside when main window minimized.

- Fixed rendering bug with Rebar gripper under Windows 7 when main window minimized/maximized.

- Changed ChangeButtonEx, now includes selectedimagelD, hotSelectedimagelD and pressedSelectedimagelD
parameters.

- Changed SetButtonExSkin, now has an extra optional ComponentName$ parameter.

- Changed SetSplitterExSkin, now has an extra optional ComponentName$ parameter.

- Changed SetPanelExPageCursor, default system cursor constants can now be passed as well as HCURSOR.
- Changed ButtonEx, can now have different mouse cursors for each state in skins.

- Changed ButtonEx, now has default "image" property with "noclip" parameter in skin.

- Changed ButtonEx, can now have bold / italic / underline etc.. in font skin property.

- Added new ExplorerBar control with smooth sliding animation and alpha fade transparency!

- Added new CreateExplorerBar command.

- Added new AddExplorerBarGroup command.

- Added new AddExplorerBarimageGroup command.

- Added new ExplorerBarltem command.

- Added new ExplorerBarimageltem command.

- Added new ExplorerBarlD command.

- Added new FreeExplorerBar command.

- Added new #PNLX_HPERCENT, #PNLX_VPERCENT and #PNLX_NOCLI P style flags to AddPanelExImagePage.
- Added new SetPanelExPageAlpha command.

- Added new GetPanelExPageScrolling command.

- Added new ToggleButtonEx command.

- Added new RadioButtonEx command.

- Added new CheckButtonEx command.

© 2025 Chris Deeney, Hash Design

164 ProGUI V1.44

- Added new IsSkin command.

- Added new GetSkinHandle command.
- Updated examples.

- Updated docs.

16 August 2011 : Version 1.27

- Fixed rendering bug with ToolbarEx/MenuEx when inside a PanelEx/SplitterEx.

- Fixed event notification bug with ToolbarEx/MenuEx inside PanelEx/SplitterEx.

- Fixed small memory leak in ImgBlend and ImgHueBlend.

- Fixed notification of #REBAR_UPDATED when size changed, now gets posted just before the Rebar is about to be
changed instead of after.

- Added automatic HotKey/Keyboard Shortcut creation and management to MenuEXx item text.

- Added #ProGUI _Any (or #PB_Any) support to all controls, using the PureBasic Object Manager (Thanks Thomas
and Poshu!).

- Added automatic setting of parent window to #Ws_CLI PCHI LDREN when a control requires the parent to clip children
for flicker free rendering.

- Added new #I ngBl end_DestroyOri gi nal flag to ImgBlend and ImgHueBlend.

- Added new MenuExAutoHotKeyDisable command.

- Added new HotKey command.

- Added new LimitWindowSize command.

- Added new LoadFontEx command.

- Added new SetWindowFont command.

- Added new FreeFontEx command.

- Added new AlphaBlendColour command.

- Added new Loadlmg command.

- Added new ImgPath command.

- Added new ImgWidth command.

- Added new ImgHeight command.

- Added new Freelmg command.

- Added new LWord and HWord helper commands to general.

- Updated examples.

- Updated docs.

25 July 2011 : Version 1.26

- Fixed top PanelEx parent window brush alignment bug with semi-transparent PanelEx page background.

- Fixed none posting of #SPLI TTEREX_MOUSEDOVWN event message.

- Fixed #SPLI TTEREX_POSI TI ON bug with nested vertical SplitterEx.

- Fixed SplitterEx bug with gripper being dragged when double-tap (when using trackpad) then released and then
mouse moved.

- Fixed ToolBarExAttachDropdownMenu not working.

- Fixed bug with #SPLI TTEREX_ANCHOREDBOTTOM constant not being to the power of 2.

- Fixed SplitterEx Anchoring bug when ‘clicked' to anchor then 'clicked' to de-anchor and gripper not previously
dragged.

- Fixed incorrect dwExtralnfo data type from long to int (pointer) in MSLLHOOKSTRUCT structure (Thanks for finding
this Denis! :))

- Updated examples.

- Updated docs.

© 2025 Chris Deeney, Hash Design

History 165

20 July 2011 : Version 1.25

- Fixed PureBasic PanelGadget rendering bug inside SplitterEx under Windows XP.

- Fixed SplitterEx lockup bug on 32bit machines.

- Fixed vertical SplitterEx skin padding bug.

- Fixed rendering bug of top PanelEx with semi-transparent gradient background.

- Fixed position bug of Rectangle/Ellipse gradients in a nested PanelEx and TextControlEx.

- Fixed bug with ToolBarEx dropdown lockup under x64 when no menu attached (found and fixed by Denis, thanks!)
- Fixed missing constants in UserLibrary resident.

- Updated examples.

- Updated docs.

16 July 2011 : Version 1.24

- Fixed missing #TVM _SETI TEVHEI GHT constant value in Preferences example.

- Fixed bug with SplitterEx padding causing control border to be clipped.

- Fixed bug with SplitterEx/PanelEx where PureBasic container control inside not erasing background.

- Fixed flickering of Windows system scrollbars in nhone ProGUI controls inside PanelEx/SplitterEx.

- Fixed bug with SetSplitterExAttribute and #SPLI TTEREX_VERTI CAL flag value being inverted.

- Fixed bug with SetSplitterExAttribute and firstminimum/firstmaximum on vertical SplitterEx.

- Fixed flickering of none ProGUI components inside SplitterEx/PanelEx and further optimized rendering.

- Fixed vertical SplitterEx splitter alignment bug when resized.

- Added new #SPLI TTEREX_MOUSEDOWN, #SPLI TTEREX_MOUSEUP and #SPLI TTEREX_HOVER Windows Event notification
messages for detecting SplitterEx gripper state.

- Added new SplitterEx anchor feature.

- Added new SplitterEx #SPLI TTEREX_ANCHORSI ZETO, #SPLI TTEREX_ANCHORPOSI Tl ON, #SPLI TTEREX_ANCHOR,
#SPLI TTEREX_ANCHOREDTOP, #SPLI TTEREX_ANCHOREDLEFT, #SPLI TTEREX_ANCHOREDBOTTOM and

#SPLI TTEREX_ANCHOREDRI GHT constants.

- Added new CopySkin command.

- Updated examples.

- Updated docs.

07 July 2011 : Version 1.23

- Fixed parent background render bug of PanelEx page with -1 background.

- Fixed bug with SetSkinPropertyData and SetSkinPropertyDataSize where if property not already created then
wouldn't set.

- Fixed bug with ButtonEx not setting some properties from skin at state change.

- Changed the Skin Sub-system, can now take an optional colour theme name in ‘component' parameter separated
by a colon.

- Changed SetGradient, now just changes gradient style.

- Added special colour constants to skins for system window background etc..

- Added new SplitterEx command.

- Added new SetSplitterExSkin command.

- Added new GetSplitterExSkin command.

- Added new SetSplitterExAttribute command.

- Added new GetSplitterExAttribute command.

- Added new SplitterExID command.

- Added new FreeSplitterEx command.

- Added new SetGradientColour command.

- Added new GetGradientColour command.

- Added new RemoveGradientColour command.

© 2025 Chris Deeney, Hash Design

166 ProGUI V1.44

- Added new gradient styles and multiple blend colours.

- Added new GetDefaultGlobalSkinColourTheme command.
- Added new GetGlobalSkinColourTheme command.

- Added new SetGlobalSkinColourTheme command.

- Added new SetPanelExPageCursor command.

- Updated docs.

22 May 2011 : Version 1.22

- Fixed ButtonEx IMA bug in 32bit Userlib.

- Fixed bug in Mutex anti-deadlock code.

- Fixed none de-selection of PopupMenuEx when clicked outside of menu's window.
- Updated docs.

16 May 2011 : Version 1.21

- Fixed lockup bugs under Windows XP 32bit due to a bug in UnlockMutex.

- Fixed various small bugs.

- Fixed possible IMA on program exit with DLL version due to bug in DLL detach procedure.

- Fixed alpha icon rendering bug with InsertToolBarExGadget() in Windows XP 32bit due to a bug in Windows API
ImageList_Copy command.

- Changed SaweRebarLayout/LoadRebarLayout now saves show state of each band.

- Updated docs.

13 May 2011 : Version 1.20

- Fixed bug that caused an IMA with ToolBarEx and no MenuEx when ToolBarEx has dropdown button.

- Fixed small rendering glitch of PanelEx border corners at certain sizes.

- Fixed potential null buffer IMA bug in internal code.

- Fixed rendering bug with ToolBarDropdownimageButtonEx menu containing sub menu.

- Fixed submenu window alignment bug of menu in ToolBarDropdownlmageButtonEx.

- Fixed some rendering bugs under Windows XP.

- Fixed bug where grid-lines not appearing in listicon gadget.

- Fixed memory leak in FreeToolbarEx.

- Fixed rendering bug with none masked border in nested PanelEx.

- Changed CreatePanelEx UserCallback, now allows custom drawing inside the PanelEx page.

- Changed AddPanelExPage, AddPanelExImagePage, InsertPanelExPage, InsertPanelExiImagePage and
SetPanelExPageBackground, now have more default background themes.

- Changed SetPanelExPageBorder, can now also take a page handle as the index parameter, automatically
generate a mask/border rectangle based on the border image and the BorderBackgroundColor parameter has been
dropped and replaced with noRefresh.

- Changed SetPanelExPageBackground, now has an extra noRefesh parameter.

- Changed AddRebarGadget and InsertRebarGadget, now return -1 for failure.

- Changed GetToolBarExButtonWidth to ToolBarExButtonWidth and GetToolBarExHeight to ToolBarExHeight.
- Changed ImageButtonExToolTip to ButtonExToolTip, ChangelmageButtonEx to ChangeButtonEx,
DisablelImageButtonEx to DisableButtonEx, ImageButtonEXxID to ButtonEXID and FreelmageButtonEx to
FreeButtonEXx.

- Added new Skin subsystem!

- Added new skinned ButtonEx control!

- Added new ButtonEx command.

- Added new SetButtonExSkin command.

© 2025 Chris Deeney, Hash Design

History 167

- Added new GetButtonExSkin command.

- Added new CreateSkin command.

- Added new SetSkinPath command.

- Added new LoadSkin command.

- Added new SaweSkin command.

- Added new GetSkinName command.

- Added new SetSkinProperty command.

- Added new GetSkinProperty command.

- Added new GetSkinPropertyParam command.

- Added new GetSkinPropertySubParam command.
- Added new CountSkinPropertySubParams command.
- Added new GetSkinPropertyColour command.

- Added new GetSkinProperty SubParamColour command.
- Added new GetSkinPropertyData command.

- Added new GetSkinPropertyDataSize command.
- Added new SetSkinPropertyData command.

- Added new SetSkinPropertyDataSize command.

- Added new FreeSkin command.

- Added new RefreshPanelEx command.

- Added new SaveRebarLayout command.

- Added new LoadRebarLayout command.

- Added new RebarBandID command.

- Added new MoveRebarBand command.

- Added new SetRebarUserCallback command.

- Updated examples.

- Updated docs.

29 March 2011 : Version 1.18

- Fixed bug with menu drop shadows rendering more than once if contents of menu changed while open.

- Fixed background rendering bug when static control inside nested PanelEx.

- Fixed background alignment bug with static controls in PanelEx.

- Significantly Improved rendering performance of background behind static controls in PanelEx.

- Mutexed up a lot of thread critical code with automatic anti-deadlock recowvery.

- Changed MenuEXxID, now returns handle to menu's title toolbar window or HMENU handle if PopupMenuEX.

- Changed ImgBlend and ImgHueBlend, can now also automatically handle a basic transparency mask (no alpha
channel) in the source icon.

- Added SetPanelExPageScrolling command, allows automatic scrolling support of PanelEx pages (fully nestable)
when content is outside viewable area.

- Updated examples.

- Updated docs.

09 January 2011 : Version 1.17

- Fixed multiple ImageButtonEx posting wrong ID when clicked.

- Fixed bug in SetPanelExPageBackground and SetPanelExPageBorder where PanelEx wasn't updated/re-drawn on
change.

- Fixed nasty GDI handle leak bug with TextControlEx inside PanelEXx.

- Fixed incorrect ToolBarEx height in Office Example in Windows XP due to bug in DisableToolBarExButtonFade.

- Changed SetUIColour, passing a "default" colour scheme constant will automatically select the corresponding
custom colour slot.

- Added new #UI STYLE_| MAGE style constant to ToolBarEx.

© 2025 Chris Deeney, Hash Design

168 ProGUI V1.44

- Added new SetGradient command.

- Added new DCC Manager User Interface example.

- Added new PDF ersion of documentation for printing.
- Updated examples.

- Updated docs.

02 January 2011 : Version 1.16

- Fixed negative desktops bug (reported by Poshu).

- Fixed menu tracking drop shadow flickering in desktop composite mode (Aero).

- Fixed menu scrolling flickering in desktop composite mode (Aero).

- Fixed/Significantly improved menu tracking flickering in desktop composite mode (Aero).

- Fixed/Remowved delayed drop shadow "feature" in desktop composite mode (Aero).

- Fixed small bug in key-code decoding subroutines which might surface under unusual circumstances due to
Mandarin Unicode character set.

- Fixed TextControlEx redraw on change bug in PanelEX.

- Fixed TextControlEx hyper links sending duplicate messages to message queue.

- Fixed various alignment, padding and hyper link bugs in TextControlEx.

- Fixed IMA when TextControlEx has #TCX_BK_GRADI ENT flag set and no gradient has been set before with
SetTextControlExGradient.

- Fixed ImageButtonEx redraw on change bug in PanelEx.

- Fixed small bug in MenuEXx item selection.

- Fixed small alignment bug with upside down menu on ToolBarDropdownimageButtonEx.

- Fixed default MenuEXx disabled icon rendering in Office 2003 style on 64bit machines.

- Fixed bug with hot display of menu item images under Windows 7/Vista classic style menus.

- Fixed small resize rendering bug with Rebar under Windows 7/Vista.

- Fixed GetUIColour and SetUIColour, now working with #Ul STYLE_WHI DBEY.

- Fixed bug in DisableMenultemEXx whereby an item with submenu was being ignored.

- Fixed rendering of disabled item submenu arrow, now uses #di sabl edCol or .

- Fixed bug in GetMenultemExText whereby an item with submenu was being ignored.

- Fixed bug with SetMenultemEXx deleting old submenu when new submenu specified (coded a workaround due to
undocumented behaviour of Windows API SetMenulteminfo, bloody Microsoft grr!).

- Improved default disabled state icons/handling in visual styles.

- Added new Office 2007 visual style!

- Added escape-code effects to ToolBarEx button text.

- Added drop-shadows to ToolBarDropdownimageButtonEx when menu active in Office 2003 style.
- Added new #t ool bar Separ at or , #t ool bar Separ at or Shadow, #t ool bar Hot Gr adi ent Col or 1,
#t ool bar Hot Gr adi ent Col or 2, #Sti ckySel ect Bor der Col or, #t ool bar But t onText Col or,

#t ool bar But t onHot Text Col or and #t ool bar But t onDi sabl edText Col or colour constants to Office 2003/2007
styles.

- Added new #TCX_END_ELLI PSI S, #TCX_PATH_ELLI PSI' S, #TCX_DI SABLE_ESCAPECODES and
#TCX_| GNORE_COLOR_ESCAPECCDE flag constants to TextControlEx.

- Added new Office 2003/2007 visual styles to ComboBoxes when inserted into a ToolBarEx with
ToolBarExGadget/InsertToolBarExGadget.

- Added #TBSTYLE_WRAPABLE support/functionality to ToolBarEx inside Rebars.

- Added new PanelExWidth command.

- Added new PanelExHeight command.

- Added new ImgBlend command.

- Added new ImgHueBlend command.

- Added new ToolBarExGadget command.

- Added new DisableToolBarExButtonFade command.

- Added new RemowveToolBarExButton command.

- Added new HideToolBarExButton command.

© 2025 Chris Deeney, Hash Design

History 169

- Added new InsertToolBarButtonEx command.

- Added new InsertToolBarimageButtonEx command.

- Added new InsertToolBarSeparatorEx command.

- Added new InsertToolBarDropdownimageButtonEx command.

- Added new InsertToolBarExGadget command.

- Added new GetToolBarExButtonWidth command.

- Added new SetToolBarExButtonWidth command.

- Added new SetToolBarExHeight command.

- Added new ToolBarExGadgetlD command.

- Added new DisablelmageButtonEx command.

- Added new SetTextControlExDimensions command.

- Added new TextControlExWidth command.

- Added new TextControlExHeight command.

- Changed behaviour of MenuEXx bar when main window resized too small, menu titles now wrap onto separate rows.
- Changed SetUIColour, now has an extra "noUpdate" parameter.

- Changed FreeMenuEXx, now accepts -1 to free all menus and returns True for success.
- Updated examples.

- Updated docs.

11 November 2010 : Version 1.14

- Fixed Window close/re-open memory access \violation (reported by GG and Poshu).

- Fixed thread collision IMA with internal track window code. (reported by Joaquin Fernandez)
- Fixed Office 2003 style rendering bug on Windows 7 (reported by Soner Boztas).

- Fixed PureBasic Userlib version compiler errors with threadsafe/unicode.

- Updated examples.

- Updated docs.

02 October 2010 : Version 1.13

- Fixed PanelEx no background bug.

- Fixed mouse tracking bug with ButtonEx and window border overlap.

- Fixed mouse tracking bug with hyperlink in TextControlEx and window border overlap.

- Fixed hower rendering bug with same ID hyperlinks in TextControlEx.

- Fixed PanelEx inside PanelEx background re-draw bug.

- Fixed bug with ToolBarEx when ToolBarButtonEx created before ImageButtonEX.

- Fixed/Improved Rebar rendering.

- Fixed Rebar double-buffer rendering bug with Office 2003 style.

- Fixed bug with MenuEx cached buffer not re-rendering on Windows theme change.

- Fixed bug with internal Rebar and ToolbarEx callback code when no menu attached/created.

- Fixed rendering bug with ToolBarEx inside PanelEx.

- Fixed various Windows Messages not being sent to PanelEx Usercallback.

- Hugely optimized PanelEx/Nested PanelEx rendering and masked border rendering.

- Added new 64 bit version of ProGUI!

- Added/fixed PNG, JPG and other image format support to MenuEX.

- Added/fixed PNG, JPG and other image format support to ToolbarEx.

- Added #PB_Any to ToolBarButtonEx, ToolBarimageButtonEx and CreatePanelEx.

- Changed StartProGUI, now requires 7 key codes.

- Changed ChangeToolbarExButton, if normallmagelD, hotimagelD or disabledimagelD are set to -1 the parameter is
ignored and the original image is kept.

- Changed CreateRebar, can now accept image as parameter for custom background rendering of Rebar.
- Changed AddRebarGadget, can now accept image as parameter for custom background rendering of band.

© 2025 Chris Deeney, Hash Design

170 ProGUI V1.44

- Changed InsertRebarGadget, can now accept image as parameter for custom background rendering of band.
- Updated examples.
- Updated docs.

01 September 2009 : Version 1.12

- Fixed ToolbarEx not displaying tooltip bug with DLL version and none Unicode executable.
- Fixed missing #Ver t i cal GRADI ENT constant in res and include.

- Fixed bug in SetTextControlExText where dimensions were calculated incorrectly.

- Fixed AddPanelExImagePage auto calculated image dimensions when icon passed as image.
- Fixed displaying of popup menus when no main toolbar or menu.

- Fixed md5 check bug with incorrect path to ProGUI DLL.

- Added double '$' escape code in MenultemEXx.

- Added multi-line support to TextControlEx as escape code.

- Added hyperlink support to TextControlEx as escape code.

- Added new #TCX_LI NK_HOVER window event natification.

- Added new #TCX_LI NK_CLI cK window event natification.

- Added new style flags #PNLX_PERCENT, #PNLX_STRETCH, #PNLX_HREPEAT, #PNLX_VREPEAT, #PNLX_RI GHT,
#PNLX_BOTTOM, #PNLX_TI LE to AddPanelExImagePage.

- Added new command SetTextControlExStyle.

- Added new command SetTextControlExLinePadding.

- Added new command TextControlExID.

- Added new command FreeTextControlEx.

- Added new command ImageButtonEx.

- Added new command ChangelmageButtonEXx.

- Added new command ImageButtonExToolTip.

- Added new command ImageButtonEXID.

- Added new command FreelmageButtonEx.

- Added new command ToolBarExToolTipDelay.

- Added new command ToolBarExID.

- Added new command SetPanelExPageBorder.

- Added new command SetPanelExPageBackground.

- Added new command InsertPanelExPage.

- Added new command InsertPanelExImagePage.

- Added new command FreePanelEx.

- Added new command FreePanelExPage.

- Added new command InsertRebarGadget.

- Added new command DeleteRebarBand.

- Added new command FreeRebar.

- Changed PanelEx, now double buffered, supports semi-transparent panels within panels and optional 2nd overlay
background/image.

- Changed TextControlEx, now draws directly to panel's buffer if in panel.

- Changed PanelEXID, if index is < 0 then returns handle to PanelEx

- Changed AddPanelExPage and AddPanelExlmagePage, can now take gradient as background.
- Changed SetTextControlExPadding, now takes an ID as first parameter.

- Changed SetTextControlExFont, now takes an ID as first parameter.

- Changed SetTextControlExColour, now takes an ID as first parameter.

- Changed SetTextControlExGradient, now takes an ID as first parameter.

- Changed FreeToolBarEx, specifying toolbar.l as -1 will now free all ToolbarEx's.

- Updated examples.

- Updated docs.

© 2025 Chris Deeney, Hash Design

History 171

22 May 2009 : Version 1.11

- Fixed all Vista/Windows 7 rendering bugs.

- Fixed memory access violation on Vista/Windows 7 in Office Example (due to forgetting to allocate space for
terminating null doh!)

- Fixed bug with Unicode detection of theme colour scheme in Vista/Windows 7.

- Fixed DisplayPopupMenuEx menu width bug in Vista/Windows 7.

- Fixed DisplayPopupMenuEXx edge of screen positioning bug.

- Added detection of desktop composite mode (Full Aero) and automatically reverts to composite optimized menu
tracking if detected.

- Added auto Vista/Windows 7 visual style adoption for classic style menus if common controls greater than version
6 and themes enabled.

- Added auto buffering of whole menu window (speed optimization for menu tracking).

12 May 2009 : Version 1.1

- Fixed all memory leaks and various minor bugs.

- Fixed rendering bug with PanelEx static control background brushes on theme change.

- Fixed rendering bug with Whidbey style menus on Windows Classic theme.

- Fixed bug with Whidbey style keyboard navigation bellow separator bar when up cursor key pressed.

- Fixed bug with menu keyboard navigation when item selected by pressing enter.

- Fixed bug inside internal subroutine CalcMenultemHeight.

- Fixed bug with menu tracking on edge of screen when classic style menu contains a separator bar.

- Fixed bug with clicking on same menu title re-activating menu when menu keyboard activated by Alt or F10.
- Fixed bug with submenu item staying selected when mouse mowed into parent menu item (Windows menu
bug/quirk).

- Fixed incorrect colours in #UISTYLE_OFFICE2003 classic grey rebar background.

- Fixed bug with menu item disabled selection with keyboard navigation.

- Fixed bug with double click and track mouse on menu bar.

- Fixed rendering vertical position rounding bug with ToolbarEx on classic theme with Office 2003 style.

- Fixed rendering position bugs with dropdown ToolbarEx button.

- Fixed menu tracking bug when mouse moved rapidly and across a drop down activating.

- Fixed hot MenultemEX icon rendering, now working.

- Fixed bug with upside down menu tracking when mouse in submenu over menu bar activating menu title
underneath.

- Fixed bug with different font sizes and menu at edge of screen positioning.

- Fixed accidentally exported procedures Attach Process/Thread in Userlib version.

- Fixed bug with Userlib version where dll's being opened with fixed library number.

- Fixed bug with toolbarEx not displaying tooltips properly with #TBSTYLE_V\RAPABLE.

- Fixed bug with Vista menu tracking rendering.

- Heanily Optimized rendering including new internal caching engine and intelligent DoubleBuffering, rendering
performance on par with original Microsoft Office! and certainly faster than any other competing product!

- Added new flicker free menu tracking code, something that Microsoft were unable to implement in Office.

- Added support for unicode: DLL version now all internally unicode and separate unicode Userlib version.

- Added UlColourMode/Colour Scheme support for Whidbey style.

- Added new component colour constants to Ul Styles.

- Added new text rendering engine to MenuEx and TextControlEx: supporting escape code colours, bold, italic,
underline and strike through effects.

- Added support for checkboxes and radiochecks in menus.

- Added automatic right aligned shortcuts to menus, identical to Office 2003.

- Added automatic scrolling of large menus that won't fit on screen, superior scrolling than Microsoft Office!

- Added new command SetMenuExItemState.

- Added new command GetMenuExItemState.

© 2025 Chris Deeney, Hash Design

172 ProGUI V1.44

- Added new command DisplayPopupMenuEX.

- Added new command SetMenultemEx.

- Added new command GetMenultemExText.

- Added new command RemoveMenultemEXx.

- Added new command InsertMenultemEx.

- Added new command SetMenuEXxStyle.

- Added new command SetMenuExFont.

- Added new command GetMenuExFont.

- Added new command GetMenuExBarHeight.

- Added new command SetToolBarExStyle.

- Added new command GetToolBarExHeight.

- Added new command SetRebarStyle.

- Added new command GetUIColourMode.

- Added new command GetCurrentColourScheme.

- Added new command GetFontName.

- Added new command GetFontSize.

- Added new command MenuExF10Disable.

- Changed/fixed rendering of menu item size in Whidbey and Office 2003 styles, now pixel perfect!

- Changed/fixed large font size issues, can now handle high DPI.

- Changed/fixed submenu aligning in Whidbey and Office 2003 styles, now like office 2003.

- Changed/fixed menu item selection fade in Whidbey and Office 2003 styles, now disabled like Office 2003.
- Changed/fixed drop-shadow sub-routines with custom colour/alpha support and internal caching, now identical to
Microsoft Office.

- Changed/fixed menu item submenu arrow, now always rendered black in Whidbey and Office 2003 styles.
- Changed/fixed popup submenu's style now conforms to parent's style when created with a different style.

- Changed/fixed multi-monitor positioning of menus, now uses available workspace like Office.

- Changed rendering of Extended Menu's default disabled item icon in Office 2003 style to greyed icon.

- Changed all internal instances of Set/GetWindowLong and Set/GetClassLong to Ptr versions for 64bit compatiblity.
- Changed DisableMenultemEXx, can now also accept a returned handle from CreateMenuEXx as input.

- Changed MenultemEXx, can now also accept a MenuEx ID as submenu as well as menu handle.

- Changed ShowRebarBand, can now also accept an ID as well as handle, band can also now be an index or ID.
- Changed RebarHeight, can now also accept a handle or ID as input.

- Changed ToolBarDropdownlmageButtonEx, can now accept either menuEx handle or ID as menulD.

- Changed ToolBarExToolTip, can now replace an already associated tooltip with new text or remowve the tooltip.
- Changed UlColourMode to SetUIColourMode.

- Changed default menu icon size to 16x16 pixels

- Improved classic style MenuEx rendering

- Improved ease of custom Ul colour setup by copying defaults into custom slots at start-up.

- Corrected a few spelling typos on some of the commands and constants.

- Updated examples.

- Updated docs.

28 February 2009 : Version 1

- Fixed many minor bugs and rendering issues.

- Fixed hot-tracking bug with menu multi-monitor support.

- Added new Office 2003 style menus, Toolstrips and Rebars.

- Added full support for menu keyboard navigation and hotkey support.
- Added new command ToolBarSeperatorEx.

- Added new command ToolBarExToolTip.

- Added new command UlColourMode.

- Added new command GetUIColour.

- Added new command SetUIColour.

© 2025 Chris Deeney, Hash Design

History

- Added new command MakeColour.

- Added new command CreateGradient.

- Added new command FreeGradient.

- Added new #REBAR_UPDATED window event notification.

- Updated setTextControlExGradient command, now functional.

- Updated CreateRebar command.
- Updated examples.
- Updated docs.

09 April 2008 : Version 0.60 Beta
- Fixed various minor bugs.
- Added new command ChangeToolbarExButton.
- Updated docs.
19 August 2007 : Version 0.59 Beta
- Fixed minor graphical bug with new menu styles.
- Added style parameter to CreatePopupMenuEX.
- Updated examples.
- Updated docs.
31 May 2007 : Version 0.58 Beta
- Fixed bug with DisableMenultemEXx().
- Added new Office XP style menus!
- Updated examples.
- Updated docs.

04 December 2006 : Version 0.56 Beta

- Fixed memory access violation bug in Windows Vista.

- Fixed chewvron popup position bug when chewvron behind left of screen.

- Fixed multiple monitor menu position bug.

- Fixed bug with submenus in CalcMenultemWidth.
- Simplified Rebar and ToolbarEx creation.

- Improved Menu tracking.

- Added RebarHeight command.

- Added #TBSTYLE_HIDECLIPPEDBUTTONS flag to ToolbarEx Styles.
- Updated ToolBarDropdownlmageButtonEx command, defaults to drop-down arrow in a separate section.

- Updated examples.
- Updated docs.

17 November 2006 : Version 0.55 Beta

- Updated AddPanelExImagePage, now supports any image format of any size as a background image.

- Updated PanelEx example.
- Windows Vista redraw optimizations.
- Updated docs.

173

© 2025 Chris Deeney, Hash Design

174 ProGUI V1.44

29 October 2006 : Version 0.54 Beta
- Library updated to Pure Basic V4.0 code.
- DLL version and new User Library version.
- Many internal changes and bug fixes.
- Reduced DLL size.
- Now Windows Vista Beta compliant!
- Updated docs.

25 February 2006 : Version 0.53 Beta
- Added AddPanelExImagePage command.
- Added new PanelEx example.
- Updated docs.

19 February 2006 : Version 0.52 Beta

- Fixed memory access violation bug with ToolbarEx on program exit.

14 February 2006 : Version 0.51 Beta

- Fixed DLL detach process bug.
- Added optional background gfx to PanelEx.

05 January 2006 : Version 0.5 Beta

- First public beta release of ProGUI.

© 2025 Chris Deeney, Hash Design

Index 175

Index
A -

AddExplorerBarGroup ExplorerBar group 112

AddExplorerBarimageGroup ExplorerBar group image
icon 113

AddPanelExImagePage 72
AddPanelExPage 71
AddRebarGadget 55
AlphaBlendColour 133

_B -

ButtonEx 85

ButtonEx Skin State Properties Property 93
ButtonExID 92

ButtonExToolTip 89

_C -

CalcMenultemWidth 40
ChangeButtonEx 90
changelListiconSublcon 23
ChangeToolbarExButton 48
checkbox 36, 37
CheckButtonEx check box tick 88
checkgroup 37

copy skin component 149
CopySkin 149
CountSkinPropertySubParams 145
CreateExplorerBar Create Explorer Bar 112
CreateGradient 133
CreateMenuEx 29
CreatePanelEx 70
CreatePopupMenuEx 32
CreateRebar 54

CreateSkin 141
CreateToolBarEx 41

D -

DeleteRebarBand 57
DisableButtonEx 91

DisableMenultemEx 39
DisableToolbarExButton 48
DisableToolBarExButtonFade 52
DisplayPopupMenuEx 32

_E -

ExplorerBar Explorer Bar navigation collapse 109
ExplorerBarlD 116

ExplorerBarimageltem image item option ExplorerBar
114

ExplorerBarltem ExplorerBar item option 113

“E -

F10 32
FreeButtonEx 92
FreeExplorerBar ExplorerBar 116
FreeFontEx font free 25
FreeGradient 135
Freeimg 138
FreeMenuEx 40
FreePanelEx 84
FreePanelExPage 83
FreeRebar 60
FreeSkin 150
FreeSplitterEx 104
FreeTextControlEx 68
FreeToolBarEx 52

-G -

GetButtonExSkin 89

GetButtonExState Get ButtonEx State Radio Check
Toggle Button 91

GetButtonExText Get Button Text 90
GetCurrentColourScheme 125
GetDefaultGlobalSkinColourTheme 140
GetExplorerBarGroupState 115
GetExplorerBarSkin ExplorerBar Skin Get 115
GetFontName 24

GetFontSize 24
GetGlobalSkinColourTheme 140
GetGradientColour 134
GetMenuExBarHeight 40

GetMenuExFont 34

GetMenuExltemState 37

© 2025 Chris Deeney, Hash Design

176 ProGUI V1.44

GetMenultemExText 38
GetPanelExBitmap panelex bitmap image buffer 81 L
GetPanelExPageScrolling 80

GetPanelExUserCallback get panelex usercallback LimitwindowSize limit window size resize 27

76

i i LoadFontEx Font 23
GetSkinAutoUpdate Get Skin AutoUpdate State oadrontex Fon
148 Loadimg 135

LoadRebarLayout 59
LoadSkin 141
LWord, LOWORD, Low Word 27

GetSkinHandle skin handle 143
GetSkinName 142
GetSkinProperty 143
GetSkinPropertyColour 146

GetSkinPropertyData 146 - M -
GetSkinPropertyDataSize 147
GetSkinPropertyParam 144 MakeColour 132
GetSkinPropertySubParam 145 MakeRGB RGB red green blue colour color 132
GetSkinPropertySubParamColour 146 menu hot key keyboard accelerator disable enable
GetSplitterExAttribute 102 shortcut 33
GetSplitterExSkin 101 MenuBarEx 36
GetTextControlExStyle 66 MenuExF10Disable 32
GetTextControlExText Get TextControl text 65 MenuExID 39
GetUIColour 125 MenultemEx 35
GetUIColourMode 124 MenuTitleEx 34
merge skin 150
_ H _ MowveRebarBand 57
HideToolBarExButton 49 - O -
Hot Key Keyboard Accelerator Shortcut 25
HWord, Hiword, High Word 27 OpenWindowEx Open Window Create hwnd 26
- | - -P-
ImageButtonEx 85, 86 PanelExHeight 83
ImgBlend 136 PanelExID 83
ImgHeight 136 PanelExPagelndex 83
ImgHueBlend 137 PanelExWidth 82
ImgPath 135 ProGUIVersion 22
ImgWidth 136
InsertMenultemEx 39 _ R _

InsertPanelEximagePage 74
InsertPanelExPage 73
InsertRebarGadget 56

RadioButtonEx radio button option skin 87
radiocheck 36

InsertToolBarButtonEx 45 RebarBandID 58
InsertToolBarDropdownimageButtonEx 47 RebarHeight 58
InsertToolBarExGadget 47 RebarlD 58
InsertToolBarimageButtonEx 46 RefreshPanelEx 82
InsertToolBarSeparatorEx 46 RemoweGradientColour 134

IsSkin 150 RemoveMenultemEx 38

© 2025 Chris Deeney, Hash Design

Index 177

RemoweToolBarExButton 49

_S-

SaveRebarLayout 58

SaweSkin 142

SelectToolbarExButton 48

set skin porperty param parameter 144
SetButtonExSkin 89

SetButtonExState Set ButtonEx State Radio Check
Toggle Button 92

SetButtonExText Set Button Text 90
SetExplorerBarGroupState 114
SetExplorerBarSkin ExplorerBar Skin Set 115
SetGlobalSkinColourTheme 140
SetGradient 133

SetGradientColour 134

SetMenuExFont 34

SetMenuExImageSize 33
SetMenuExItemState 36

SetMenuExStyle 33

SetMenultemEx 37

SetPanelExPageAlpha PanelEx Page Alpha
Transparency Transparent 79

SetPanelExPageBackground 76
SetPanelExPageBorder 78
SetPanelExPageCursor 81
SetPanelExPageScrolling 80
SetPanelExUsercallback panelex usercallback 76
SetRebarStyle 55
SetRebarUserCallback 59
SetSkinAutoUpdate Skin AutoUpdate Update 148
SetSkinName set skin name 142
SetSkinPath 141
SetSkinProperty 143
SetSkinPropertyData 147
SetSkinPropertyDataSize 148
SetSplitterExAttribute 101
SetSplitterExSkin 101
setTextControlExColour 64
SetTextControlExDimensions 67
setTextControlExFont 63
setTextControlExGradient 64
SetTextControlExLinePadding 64
setTextControlExPadding 63
SetTextControlExStyle 65
setTextControlExText 65
SetToolBarExButtonWidth 51

SetToolBarExHeight 51
SetToolBarExStyle 42

SetUIColour 129

SetUIColourMode 123

ShowPanelExPage 82

ShowRebarBand 57

SplitterEx 97, 100

SplitterEx Skin State Properties Property 104
SplitterExXID 104

StartProGUI 22

- T -

TextControlEx 61
TextControlExCalcSize TextControlEx calculate size
string text 68

TextControlExHeight 67
TextControlEXID 68

TextControlExWidth 67

ToggleButtonEx toggle state button skin 86
ToolBarButtonEx 43
ToolBarDropdownimageButtonEx 44
ToolBarExAttachDropdownMenu 45
ToolBarExButtonWidth 50
ToolBarExGadget 45
ToolBarExGadgetlD 52

ToolBarExHeight 51

ToolBarExID 52

ToolBarExToolTip 49
ToolBarExToolTipDelay 50
ToolBarimageButtonEx 42
ToolBarSeparatorEx 44

W -

Window Font SetWindowFont 24

© 2025 Chris Deeney, Hash Design

	Introduction
	License
	Requirements
	Installation & Usage
	Reference Manual
	General
	ProGUIVersion
	StartProGUI
	ChangeListiconSubIcon
	LoadFontEx
	GetFontName
	GetFontSize
	SetWindowFont
	FreeFontEx
	HotKey
	OpenWindowEx
	LimitWindowSize
	LWord
	HWord

	MenuEx
	CreateMenuEx
	CreatePopupMenuEx
	DisplayPopupMenuEx
	MenuExF10Disable
	MenuExAutoHotKeyDisable
	SetMenuExImageSize
	SetMenuExStyle
	SetMenuExFont
	GetMenuExFont
	MenuTitleEx
	MenuItemEx
	MenuBarEx
	SetMenuExItemState
	GetMenuExItemState
	SetMenuItemEx
	GetMenuItemExText
	RemoveMenuItemEx
	InsertMenuItemEx
	DisableMenuItemEx
	MenuExID
	CalcMenuItemWidth
	GetMenuExBarHeight
	FreeMenuEx

	ToolBarEx
	CreateToolBarEx
	SetToolBarExStyle
	ToolBarImageButtonEx
	ToolBarButtonEx
	ToolBarSeparatorEx
	ToolBarDropdownImageButtonEx
	ToolBarExAttachDropdownMenu
	ToolBarExGadget
	InsertToolBarButtonEx
	InsertToolBarImageButtonEx
	InsertToolBarSeparatorEx
	InsertToolBarDropdownImageButtonEx
	InsertToolBarExGadget
	DisableToolbarExButton
	SelectToolbarExButton
	ChangeToolbarExButton
	RemoveToolBarExButton
	HideToolBarExButton
	ToolBarExToolTip
	ToolBarExToolTipDelay
	ToolBarExButtonWidth
	ToolBarExHeight
	SetToolBarExButtonWidth
	SetToolBarExHeight
	DisableToolBarExButtonFade
	ToolBarExID
	ToolBarExGadgetID
	FreeToolBarEx

	Rebar
	CreateRebar
	SetRebarStyle
	AddRebarGadget
	InsertRebarGadget
	ShowRebarBand
	MoveRebarBand
	DeleteRebarBand
	RebarHeight
	RebarID
	RebarBandID
	SaveRebarLayout
	LoadRebarLayout
	SetRebarUserCallback
	FreeRebar

	TextControlEx
	TextControlEx
	SetTextControlExPadding
	SetTextControlExFont
	SetTextControlExColour
	SetTextControlExGradient
	SetTextControlExLinePadding
	SetTextControlExText
	GetTextControlExText
	SetTextControlExStyle
	GetTextControlExStyle
	SetTextControlExDimensions
	TextControlExWidth
	TextControlExHeight
	TextControlExCalcSize
	TextControlExID
	FreeTextControlEx

	PanelEx
	CreatePanelEx
	AddPanelExPage
	AddPanelExImagePage
	InsertPanelExPage
	InsertPanelExImagePage
	SetPanelExUsercallback
	GetPanelExUsercallback
	SetPanelExPageBackground
	SetPanelExPageBorder
	SetPanelExPageAlpha
	SetPanelExPageScrolling
	GetPanelExPageScrolling
	SetPanelExPageCursor
	GetPanelExBitmap
	GetPanelExDC
	RefreshPanelEx
	ShowPanelExPage
	PanelExWidth
	PanelExHeight
	PanelExID
	PanelExPageIndex
	FreePanelExPage
	FreePanelEx

	ButtonEx
	ButtonEx
	ImageButtonEx
	ToggleButtonEx
	RadioButtonEx
	CheckButtonEx
	SetButtonExSkin
	GetButtonExSkin
	ButtonExToolTip
	GetButtonExText
	SetButtonExText
	ChangeButtonEx
	DisableButtonEx
	GetButtonExState
	SetButtonExState
	ButtonExID
	FreeButtonEx
	Skin States & Properties

	SplitterEx
	SplitterEx
	SetSplitterExSkin
	GetSplitterExSkin
	SetSplitterExAttribute
	GetSplitterExAttribute
	SplitterExID
	FreeSplitterEx
	Skin States & Properties

	ExplorerBar
	CreateExplorerBar
	AddExplorerBarGroup
	AddExplorerBarImageGroup
	ExplorerBarItem
	ExplorerBarImageItem
	SetExplorerBarGroupState
	GetExplorerBarGroupState
	SetExplorerBarSkin
	GetExplorerBarSkin
	ExplorerBarID
	FreeExplorerBar
	Skin States & Properties

	Colours & Images
	SetUIColourMode
	GetUIColourMode
	GetCurrentColourScheme
	GetUIColour
	SetUIColour
	MakeColour
	MakeRGB
	AlphaBlendColour
	CreateGradient
	SetGradient
	SetGradientColour
	GetGradientColour
	RemoveGradientColour
	FreeGradient
	LoadImg
	ImgPath
	ImgWidth
	ImgHeight
	ImgBlend
	ImgHueBlend
	FreeImg

	Skins
	GetDefaultGlobalSkinColourTheme
	SetGlobalSkinColourTheme
	GetGlobalSkinColourTheme
	CreateSkin
	SetSkinPath
	LoadSkin
	SaveSkin
	GetSkinName
	SetSkinName
	GetSkinHandle
	SetSkinProperty
	GetSkinProperty
	GetSkinPropertyParam
	SetSkinPropertyParam
	GetSkinPropertySubParam
	CountSkinPropertySubParams
	GetSkinPropertyColour
	GetSkinPropertySubParamColour
	GetSkinPropertyData
	GetSkinPropertyDataSize
	SetSkinPropertyData
	SetSkinPropertyDataSize
	SetSkinAutoUpdate
	GetSkinAutoUpdate
	UpdateSkins
	CopySkin
	CopySkinComponent
	MergeSkins
	IsSkin
	FreeSkin

	Registering
	Contact
	Credits
	History

